57. Без транспортира построить угол в 60°. В 30°. В 15°. В 120°. В 75°.
Р е ш е н и е. Строим равносторонний треугольник произвольных размеров; каждый его угол = 60°. Разделив угол этого треугольника пополам, получим угол в 30°. Разделив еще раз пополам, будем иметь угол в 15°. Угол в 120° = 90° + 30°. Угол в 75° =60° + 15° = 90° – 15°.
§ 52. Катет против угла в 30°
Предварительное упражнение
Равносторонний треугольник разбит равноделящей одного из углов на два треугольника. Определить их углы.
уг.
Итак, мы убедились, что
к а т е т п р о т и в у г л а в 30° р а в е н п о л о в и н е г и п о т е н у з ы.
Применения
58. Лестница длиною 6 м приставлена к фонарному столбу под углом 30° к нему (черт 148). Каково расстояние от основания лестницы до основания фонаря?
Р е ш е н и е. Так как катет против 30° равен половине гипотенузы, то искомое расстояние = 3 м.
59. Длина стропильной ноги
Р е ш е н и е. Искомый угол
Пусть у нас имеется прямоугольный треугольник (черт. 146)
§ 53. Неравные стороны и углы
Мы знаем, что если в треугольнике есть равные стороны, то углы, лежащие против них, тоже равны. Рассмотрим теперь, каково соотношение между сторонами и углами в случае н е р а в н ы х сторон.
Предварительное упражнение
В фигуре черт. 149 укажите какой угол больше: уг. 1 или у г. 2?
В фигуре черт. 151
Покажем, что в
т р е у г о л ь н и к е с н е р а в н ы м и с т о р о н а м и п р о т и в б о л ь ш е й с т о р о н ы л е ж и т б о л ь ш и й у г о л. Пусть в треугольнике
Нетрудно удостовериться, что и обратно: если в треугольнике имеются неравные углы, то
п р о т и в б о л ь ш е г о у г л а л е ж и т б о л ь ш а я с т о р о н а.
Пусть мы знаем, что в треугольнике (черт. 151)
Применения
60. Что больше: гипотенуза или катет?
Р е ш е н и е. Гипотенуза, как сторона, лежащая против самого большого угла треугольника, длиннее каждого катета.
61. Угол при вершине равнобедренного треугольника = 70°. Что длиннее: основание или боковая сторона?
Р е ш е н и е. Углы при основании равны (180°-70°) / 2 = 65°.
Так как угол прш вершине больше, то основание больше боковых сторон.
Повторительные вопросы к §§ 48–53
Каково соотношение между углами треугольника, две стороны которого равны? – каково соотношение между сторонами треугольника, имеющего два равных угла? – Каковы соотношения в треугольнике с неравными сторонами? – С нерав-нымиуглами? – Какой треугольник называется равнобедренным? – Какая сторона такого треугольника называется боковой? – Какая называется основанием? – Как называется треугольник, имеющий два равных угла? – Сколько градусов в угле, опирающемся на диаметр? – Какой треугольник называется прямоугольным? – Что называется гипотенузой? – Катетами? – По каким признакам можно установить равенство прямоугольных треугольников? – Какой треугольник называется равносторонним? – Как велики его углы? – Каково соотношение между гипотенузой и катетом, лежащим против угла в 1/3 прямого?
§ 54. Перпендикуляр, наклонная, проекция
Если из точки проведен к прямой перпендикуляр, – например,
о с н о в а н и е м п е р п е н д и к у л я р а. Всякая другая линия, проведенная через точку
Расстояния
Рассмотрим некоторые соотношения между перпендикуляром, наклонными и их проекциями.