Что называется средней линией треугольника? – Каким свойством она обладает? – Как разделить данный отрезок на несколько равных частей? – Начертите какой-нибудь отрезок и разделите его на 3 равные части. – Разделите взятый вами отрезок на
Применения
66. Фигура
Р е ш е н и е. Площадь первой слева полосы = 28 16 = = 448 кв. см, второй – 31 16 = = 496 кв. см, третьей – 31,5 16 = = 504кв. см, четвертой – 32 16 = 512 кв. см, пятой – 34 16 = 544 кв. см. Искомая площадь = 2 500 кв. см.
IX. МНОГОУГОЛЬНИКИ
§ 59. Cуммa углов многоугольника
Мы знаем, что сумма углов у всех треугольников одна и та же (180°). Рассмотрим теперь, одинакова ли сумма углов у всех четырехугольников, у всех пятиугольников – вообще у всех «одноименных» многоугольников.
Для примера возьмем ш е с т и у г о л ь н и к (черт. 165). Проведем из какой-нибудь его вершины, напр., из
Каковы бы ни были форма и размеры шестиугольника, он разбивается на 4 треугольника, и следовательно, сумма углов всякого шестиугольника = 180° 4 = 720°.
Если бы вместо шестиугольника, мы взяли многоугольник с другим числом сторон, например, девяти-угольник, то разбили бы его диагоналями не на 4, а на 7 треугольников; поэтому сумма углов всякого девяти-угольника равна 180° 7= 1260°.
Таким же образом найдем, что сумма углов всякого четырехугольника 180° 2 = 360°, пятиугольника 180° 3 = 540° и т. д.
Нетрудно подметить общее правило: с у м м а у г л о в в с я к о г о м н о г о у г о л ь н и к а р а в н а 180° у м н о ж е н н ы м н а ч и с л о е г о с т о р о н б е з д в у х.
§ 60. Правильные многоугольники
Многоугольник, у которого все углы и все стороны одинаковы называются п р а в и л ь н ы м.
Величину каждого угла правильного многоугольника легко вычислить, раз мы умеем вычислять сумму всех этих углов и знаем, что они одинаковы. Например, каждый угол правильного пятиугольника равен 540°/5= 108°,
правильного шестиугольника равен 720°/6= 120°, и т. д.
Применения
67. Как убедиться, что шестиугольными плитками можно покрыть пол сплошь, без промежутков?
Р е ш е н и е. Сумма углов правильного шестиугольника равна 180° [6 – 2] = 720°, и следовательно, каждый из внутрених углов = 720°/6 =120°.Так как сумма углов, расположенных вокруг общей вершины, равна 360°, то разделив 360: 120, узнаем, что, углы трех соседних плиток, должны плотно примкнуть друг к другу.
68. Можно ли сплошь покрыть пол восьмиугольными плитками?
Решение. Внутренний угол правильного восьмиугольника = 180°[8–2]/ 8 = 125°. Так как этот угол не содержится в 360° целое число раз то покрыть такими плитками пол с п л о ш ь нельзя.
X. ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ ОБ ОКРУЖНОСТЯХ
§ 61. Разыскание центра. Хорды
На практике нередко возникает надобность разыскать центр данной окружности или дуги. Покажем, как это делается.
Пусть требуется разыскать центр дуги, изображенной на чертеже 167. Возьмем на ней две произвольные точки, – напр.
Прямая, соединяющая две точки окружности (или дуги), называется хордой. Поэтому сейчас установленное свойство можно высказать так:
п е р п е н д и к у л я р, п р о в е д е н н ы й ч ер е з с е р е д и н у х о р д ы, п р о х о д и т ч е р е з ц е н т р о к р у ж н о с т и.
Справедливо и обратное утверждение, а именно:
п е р п е н д и к у л я р, п р о в е д е н н ы й к х о р д е ч е р е з ц е н т р к р у г а, п р о х о д и т ч е р е з с е р е д и н у х о р д ы.