Читаем Живой учебник геометрии полностью

Когда приходится отмерять на местности более или менее длинное расстояние, нельзя обойтись только мерным шнуром. Пройти с мерным шнуром на открытом поле по прямой линии, нигде не уклоняясь в сторону – удается только на сравнительно небольшом расстоянии и при том на ровном, чистом месте. Если же расстояние подлиннее, а в особенности, если местность пересечена ложбинами и зарослями – необходимо облегчить себе работу расстановкой вех.

«Веха» – это шест, метра два длиною, с заостренным концом для более удобного втыкания в землю. Лучше, если веха окована у острого конца, чтобы он не размочаливался, и окрашена попеременно, участками, в белый и черный цвета для лучшей видимости. Но это не необходимо; надо только, чтобы веха была ровная (не кривая) и не чересчур толстая; для лучшей видимости можно снабдить каждую веху красным флажком.

Рассмотрим сначала простейший случай «вешения» (расстановки вех), – когда надо провешить длинную линию на ровной местности между двумя легко доступными точками А и Е (черт. 112). Прежде всего вы устанавливаете вехи в эти крайние точки А и D, заботясь о том, чтобы они стояли отвесно. Затем становитесь позади вехи А так, чтобы вы могли видеть перед собою сразу обе вехи А и Е. Помощник, отойдя с несколькими вехами метров на 20–30 вперед, должен установить первую из своих вех в точке В между А и Е. так, чтобы все три вехи были на одной прямой линии. В этом убедиться просто: веха В будет на одной прямой линии с вехами А и Е тогда, когда, глядя на веху А, вы увидите, что она сразу покрывает собою обе другие вехи – В и Е. Если помощник поставил веху не так, вы указываете ему поднятием правой или левой руки, в какую сторону он должен подвинуть свою веху.

Когда первая промежуточная веха В поставлена, помощник ваш идет дальше, и таким же образом устанавливается следующая веха – С. Теперь, глядя на веху А, вы должны видеть ее покрывающей сразу вехи В, С и Е. Если измеряемое расстояние длинно, вы ставите затем 5-ю веху, 6-ю и т. д.

Измерение такого «провешенного» расстояния значительно облегчается: вы идете с мерным шнуром от вехи к вехе.

Возможны и более сложные случаи «вешения». Бывает, например, что обе конечные вехи недоступны для мерщиков – установлены, скажем, за речками; они хорошо видны, но к ним не подобраться. В этом случае расставляют промежуточные вехи между А и D(черт. 113). В какой-нибудь точке близ прямой ADставим веху В. Затем междувехой В и А устанавливаем на прямой ВА веху С: это удобно сделать, потому что веха В доступна.

Потом на прямой CD ставим веху Е. Между Е и А помещаем веху F; между F и D веху G; между G и А – веху H и т. д. Подвигаясь постепенно таким образом все ближе и ближе к прямой AD мы наконец разместим последнюю пару вех как раз на этой прямой. А имея две доступные вехи, нетрудно уже расставить и сколько угодно других.


Сходным образом поступают и в том случае, когда между конечными точками А и Dрасположена горка, так что, стоя у одного конца линии, нельзя видеть другого. Здесь размещают вехи в таком порядке (черт. 114). Сначала ставят веху В, потом между А и В – веху С, а между В и D веху E. Между C и E устанавливают веху F и с нею повторяют то, что делали с вехой В, – т. е. ставят на линии FA веху G, а между F и D ставят веху Н – затем между G и Н ставят веху K и так постепенно подвигаются к прямой АD пока, наконец, не очутятся на ней с последней парой вех.

§ 40. Эккер и его употребление

Взаимно перпендикулярные линии на земле проводятся при помощи инструмента, называемого эккером. Эккер – это две деревянные планки, скрепленные накрест и установленные на заостренной палке (черт. 115). У концов планок воткнуты 4 иглы (или прикреплены пластинки с прорезами) так, что прямые соединяющие противоположные иголки (или прорезы) пересекаются друг с другом под прямым углом. Впрочем нет надобности делать эккер непременно из перекрещивающихся планок; можно просто прибить четырехугольную или круглую доску к палке, в виде одноногого столика, а на этой доске установить четыре булавки Размещение булавок тоже дело не сложное: возьмите листок бумаги, перегните его раз, а затем второй раз так, чтобы линии первого сгиба совпадали. Когда вы развернете потом эту бумагу, на ней будут обозначены две линии, пересекающиеся под прямым углом. Расправьте этот листок на доске экера и воткните булавки в лики сгиба, близ краев. Бумажку можно тогда убрать– эккер готов.


Объясним теперь, как пользоваться эккером. Предположим, вы хотите аккуратно отмерить на земле прямоугольную площадку 35 метров длины и 15 ширины.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука