Читаем Живой учебник геометрии полностью

Во время экскурсий план пройденного пути зачерчивают приблизительно с помощью так называемой маршрутной съемки. Производится она следующим образом. В месте выхода из города определяют по компасу направление, на ближайшую точку пути (отдаленное дерево, валун, верстовой столб, угол здания), наносят это направление по глазомеру на бумагу, записав при нем соответствующий «румб». Идя по этому направлению до замеченного предмета, измеряют расстояние шагами. Отложив по произвольному масштабу (на глаз) это расстояние по прочерченному направлению, с соответствующей числовой пометкой, определяют по компасу направление на следующий ближайший этап, измеряют расстояние шагами и т. д., отмечая все это на черновом плане. По этому наброску и сделанным пометкам (относительно направлений и расстояний) изготовляют дома более аккуратно маршрутный план экскурсии. Все замеченные по пути особые места, лежащие вне дороги, также могут быть нанесены на этот план, если были измерены направления на них из определенных точек и соответствующие расстояния.

Ту же работу можно выполнить более тщательно с помощью «планшета», т. е. дощечки с прикрепленным к ней компасом. К дощечке прикалывают кнопками лист бумаги, на котором и чертят план. Став в точку выхода, держат планшет горизонтально, повернув его так, чтобы вороненый конец стрелки показывал на юг. На планшет кладут трехгранную масштабную линейку, прикладывают ее край к точке, изображающей начальный пункт, и направляют ее так, чтобы, глядя вдоль ее верхней грани, видеть следующий пункт пути. Когда это сделано, прочерчивают прямую линию и откладывают на ней по масштабу отрезок, отвечающий длине этой линии в натуре. Перенеся затем планшет в следующий пункт, повертывают его как и в первый раз (так что все линии планшета на новом пункте остаются параллельными тому направлению, которое они имели на прежнем). Приставив край линейки к точке, изображающей место нахождения планшета, направляют ее на ближайший следующий пункт; измерив расстояние до него, откладывают на прочерченной линии в масштабе соответственную длину, переносят планшет на четвертый пункт и т. д.


Этим приемом можно снимать не только маршруты, но и участки с несложными очертаниями, обходя его с планшетом вдоль границы. Съемка будет произведена более точно, если при этом пользоваться не планшетом, который держат в руках, а доской, устанавливаемой на треноге (такой столик называется м е н з у л о й). Перенося доску с места на место, ее располагают («ориентируют» не по компасу, а приводят, помощью линейки, начерченные на ней линии в положение, параллельное соответствующим линиям местности. Ход работы ясен из чертежа 123.

§ 44. План речки

Пусть наша речка извивается, как показано на черт. 124. Начинаем с того, что провешиваем близ ее берега магистраль АВ. Через каждые 5 или 10 метров вбиваем в землю колышек: из этих точек и из концов магистрали восста-новляем перпендикуляры (можно на глаз), и помощник измеряет длину этих перпендикуляров (можно шагами).

Затем провешиваем вторую магистраль ВС и с ней повторяем то же самое.

Чтобы иметь возможность построить угол между обеими магистралями, измеряем расстояние между двумя колышками М и N. Так как нам известно и расстояние этих колышков от точки В, то в треугольнике MBNмы знаем длину каждой из его трех сторон. Поэтому нам нетрудно будет начертить на плане этот треугольник. Чертя план, мы изобразим сначала магистраль АВ и отметим на ней положение колышков. Потом начертим треугольник MBN. Продолжив сторону BN, отложим на ней длину магистрали ВС и отметим на ней колышки. Таким образом мы и начертим обе магистрали под надлежащим углом одна к другой.


Но мы прервали наше измерение речки. Дойдя до точки С, провешиваем магистраль СЕ и измеряем расстояние между колышками О и Р, чтобы иметь возможность построить угол С. Таким же образом поступаем у поворота Е и т. д.

Ведя измерения, вы зарисовываете на черновом наброске все измеренные вами расстояния и записываете возле каждой линии ее длину. Зарисовывая магистральные линии, отмечая их длину и расстояния между колышками, вы одновременно (или ваш помощник) набрасываете на глаз очертания берегов (наиболее крупные извилины) и отмечаете длину перпендикуляров, к магистральным линиям.

По этим наброскам и записям расстояний нетрудно изобразить на плане один берег реки. А зная ширину речки, можно изобразить и линию противоположного берега.

Подобным образом можно снять на план также и дорогу, – вообще любой извилистый контур.

§ 45. Измерение ширины речки

Чтобы измерить ширину речки, не переправляясь на другой берег, а оставаясь все время на одном берегу, можно поступать следующим образом.


Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука