Читаем Живой учебник геометрии полностью

Р е ш е н и е. Объем цилиндра = 1/4 ? ? ? 232? 18 = 7500 куб. см. Значит, объем конуса = 1900 куб: см. Его высота x определяется из уравнения 1/3 ? ? ? 102? x = 1900, откуда x = 18 см. Высота конуса должна равняться высоте цилиндра.

Тангенс половины угла при вершине равен =10/18 = 0,56, откуда искомый угол = 58°.

§ 90. Шар. Его объем и поверхность

Шаром называется тело, которое можно представить себе образовавшимся от вращения полукруга около его диаметра (черт. 241). Все точки поверхности шара одинаково удалены от одной точки, называемой ц е н т р о м шара. Прямая, соединяющая центр шара с какой-нибудь точкой его поверхности, называется радиусом шара. Всякая прямая, соединяющая две точки его поверхности и проходящая через центр, называется д и а м е т р о м шара. Чтобы установить правило вычисления объема шара вообразим, что около полушара (черт. 242) описан цилиндр ABCD. Кроме того, вообразим себе конус, вершина которого в центре шара, а основание – совпадает с верхним основанием цилиндра.

Проведем теперь какую-нибудь плоскость, пересекающую все три тела параллельно основаниям цилиндра; эта плоскость MN(черт. 243) рассечет каждое из трех тел по кругу. Радиус круга, по которому рассечется цилиндр, есть PZ, полушар – PS, а конус – PK. Проведя радиус OSшара, имеем по теореме Пифагора [OS]2= [OP]2+ [PS]2.

Обозначим радиус основания цилиндра через R(он равен радиусу шара); радиус сечения полушара PSчерез h, радиус сечения конуса – через k. Тогда OS= OR= R; OP= PK= k(потому что противолежащие углы = 45°); PS= h. Написанное выше представим в виде

R2= k2+ h2.

Умножив все члены равенства на, имеем

R2= k2+ h2.

Равенство это означает, что площадь сечения нашего цилиндра [R2] равна площади сечения конуса [k2], сложенной с площадью сечения полушара [h2], лежащих в той же плоскости. Это справедливо для любой плоскости, пересекающей наши три тела параллельно основаниям цилиндра.

Представим себе теперь, что мы провели чрезвычайно много таких плоскостей в незначительном расстоянии Н друг от друга. Назовем эти плоскости номерами: № 1, № 2, № 3 и т. д. Они разрежут наши три тела на множество весьма тонких слоев, которые можно принять за цилиндры с высотою H. Для плоскости № 1, № 2, № 3 и т. д. мы будем иметь следующие объемы лежащих на них слоев:

№ 1. . . . . ?R2H = ?k12H + ?h12H

№ 2. . . . . ?R2H = ?k22H + ?h22H

№ 3. . . . . ?R2H = ?k32H + ?h32H

№ 4. . . . . . . . . . . . . . .


Сложив эти равенства почленно, мы получим в сумме первого столбца объем цилиндра ; в сумме второго столбца – все слои конуса,[13] т. е. его объем , а в сумме третьего столбца – все слои полушара, т. е. его объем Vпш. Короче говоря, мы устанавливаем, что Vц = Vк + Vпш.

Так как объем цилиндра = ?R2? R= ?R3, а объем конуса 1/3?R2? R = 1/3?R3, то полученное сейчас равенство можно представить в виде ?R3= 1/3?R3+ Vпш, откуда объем полушара V = ?R3– 1/3?R3 =2/3?R3, а объем полного шара V = 4/3?R3.


Если бы мы пожелали выразить объем шара через диаметр, следовало бы только в этой формуле заменить R через d/2, где d – диаметр. Получим V = 4/3? d3/8= 1/6?d3

Зная формулу для вычисления объема шара, можно вывести правило вычисления его поверхности.

Для этого вообразим, что шар составлен из большого числа весьма узких пирамид, сходящихся вершинами в центре шара.

Объем одной такой пирамиды равен 1/3 площади ее основания, умноженной на ее высоту. Так как эти пирамиды чрезвычайно узки (мы можем представить их себе сколь угодно узкими), то за площадь Sих основания можно принять соответствующий участок а поверхности шара, а за высоту – радиус шара R. Тогда объемы наших пирамид выразятся последовательно через


Сложив объемы всех этих пирамид и вынеси за скобку 1/3 R, получим, что объем V шара равен

v= 1/3R [a1 + a2 + a3 + a4 + и т. д.].

Но то, что в скобках, есть сумма всех участков шаровой поверхности, т. е. полная поверхность Sшара. Значит, v = 1/3RS.

Мы узнали, следовательно, что

о б ъ е м ш а р а р а в е н п р о и з в е д е н и ю т р е т и е г о р а д и у с а н а п о в е р х н о с т ь.

Отсюда выводим, что поверхность шара

S = V:1/3R = 3V/R

А так как мы уже узнали раньше, что v = 4/3?R3, то поверхность шара S = 3 ? 4/3?R3: 4?R2

Другими словами: п о в е р х н о с т ь ш а р а р а в н а у ч е т в е р е н н о й п л о щ а д и к р у г а т о г о ж е р а д и у с а.


Повторительные вопросы

Какое тело называется шаром? – Что называется центром шара, радиусом, диаметром? – Как вычислить поверхность и объем шара, если известен его радиус? – Если известен его диаметр? – Как высказать эти соотношения словесно?

Применения

123. Сколько весит оболочка воздушного шара диаметром 15 метров? Кв. м. оболочки весит 300 граммов.

Р е ш е н и е. Поверхность этого шара = 4 ? 1/4 ? ? ? 152 = 710 кв. м, а следрвательно, вес 210 кг.

124. Сколько свинцовых дробинок в 3 мм диаметром идет на 1 кг?

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука