Читаем Жизнь на скорости света. От двойной спирали к рождению цифровой биологии полностью

Самая частая у европеоидов наследственная болезнь из тех, что определяются одним геном (в США она поражает одного новорожденного из 3500), – муковисцидоз, пример неправильно складывающегося, неверно ведущего себя белка. Он вызывается дефектом в гене, который отвечает за белок, называемый муковисцидозный трансмембранный регулятор проводимости (CFTR). Этот белок регулирует транспорт хлорид-иона сквозь клеточную мембрану; его изъяны приводят к разнообразным симптомам. Например, дисбаланс воды и соли у пациентов с муковисцидозом приводит к тому, что их легкие забивает липкая слизь, которая к тому же становится средой для роста болезнетворных бактерий. Повреждение легких из-за постоянных инфекций – главная причина смерти людей с этой болезнью. Не так давно ученые показали{71}, что по большей части в основе муковисцидоза лежит самая обычная мутация, мешающая отделению транспортного белка от одного из его шаперонов. В результате последние этапы нормального складывания не проходят, и активный белок не производится в должном количестве.

Разрушение скоплений белка и белковых фрагментов жизненно важно, потому что эти субстанции могут образовывать пробки или бляшки, которые очень токсичны. Когда при забастовке мусорщиков прекращается вывоз отходов, на улицах растут горы зловонных отбросов, уличное движение замедляется, растет риск болезней, и город быстро выходит из строя. То же верно для клеток и органов. Болезнь Альцгеймера, дрожь паркинсоника и неотвратимое ухудшение при болезни Крёйцфельда-Якоба (человеческая форма коровьего бешенства) – все это происходит из-за накопления токсичных нерастворимых белковых агрегаций.

Некоторые белковые машины приспособлены для исправления ошибок при синтезе и сборке белков. Протеасомы отвечают за ликвидацию ненормальных белков путем протеолиза – реакции разрывания белковых связей, выполняемой ферментами протеиназами. Эта машина представляет собой цилиндрический комплекс, средняя часть которого состоит из четырех колец, подобно стопке бубликов, каждый бублик сделан из семи белковых молекул. Предназначенные для ликвидации в протеасоме белки-мишени помечаются молекулами убиквитина – маленького белка, присутствующего по всей клетке. Примерно тридцать лет назад этот базовый механизм избавления клетки от отходов был выявлен тремя учеными: Аароном Чехановером, Аврамом Хершко и Ирвином А. Роузом; в 2004 году они получили за это Нобелевскую премию.

Продолжительность жизни каждого белкового робота в клетке генетически запрограммирована. Действие этой программы слегка отличается в разных ветвях жизни. Например, и E. coli, и дрожжевые клетки содержат фермент бета-галактозидазу, которая помогает расщеплять сложные сахара; однако период полураспада этого фермента сильно зависит от аминокислоты на конце белка (N-концевой аминокислоты). Когда на N-конце бета-галактозидазы стоит аргинин, лизин или триптофан, время полураспада белка составляет 120 секунд у E. coli и 180 секунд у дрожжей. Если на том же месте стоит серин, валин или метионин, время полураспада значительно возрастает – более 10 часов у E. coli и более 30 часов у дрожжей. Это называется N-концевым правилом{72} пути деградации белка.

Нестабильность и недолговечность белков показывают, что и жизнь самих клеток была бы очень короткой, если бы клетки были просто мембранными мешочками – пузырьками – с белками, но без генетического материала. Все клетки умрут, если не смогут постоянно делать новые белки для замещения тех, что повреждены или неправильно сложены. Бактериальная клетка должна заново сделать все свои белки или умереть в течение часа или даже меньше. Это верно и для клеточных структур, таких как мембрана: круговорот фосфолипидных молекул и мембранных транспортеров таков, что, если они не будут постоянно пополняться новыми, мембрана лопнет и все содержимое клетки вытечет. При культивировании клеток в лаборатории применяют простой тест на жизнеспособность: определить, протекает ли их мембрана настолько, чтобы пропустить внутрь крупные частицы красителя. Если они могут проникнуть в клетки, те явно мертвы.

Другая белковая машинерия разлагает и разрушает старые или отказывающие клетки в многоклеточных организмах. Эта программируемая клеточная смерть – апоптоз – критически важная составляющая жизни и развития. Конечно, разборка чего-то настолько сложного, как клетка, требует чрезвычайно точной координации. Чтобы начать разрушение, апоптосома, белковый комплекс, прозванный «машина смерти о семи спицах», использует каскад каспаз – особой разновидности протеаз, т. е. ферментов, переваривающих белок. Эти каспазы ответственны за разборку главных клеточных белков, таких как белки цитоскелета, что приводит к характерным изменениям формы клеток, подвергающихся апоптозу. Другой признак апоптоза – это фрагментация ДНК. Каспазы играют важную роль в этом процессе, активируя фермент, расщепляющий ДНК, – ДНКазу. Кроме того, они ингибируют ферменты, ремонтирующие ДНК, разрушая структурные белки в ядре клетки.

Перейти на страницу:

Похожие книги

Основы психофизиологии
Основы психофизиологии

В учебнике «Основы психофизиологии» раскрыты все темы, составляющие в соответствии с Государственным образовательным стандартом высшего профессионального образования содержание курса по психофизиологии, и дополнительно те вопросы, которые представляют собой «точки роста» и привлекают значительное внимание исследователей. В учебнике описаны основные методологические подходы и методы, разработанные как в отечественной, так и в зарубежной психофизиологии, последние достижения этой науки.Настоящий учебник, который отражает современное состояние психофизиологии во всей её полноте, предназначен студентам, аспирантам, научным сотрудникам, а также всем тем, кто интересуется методологией науки, психологией, психофизиологией, нейронауками, методами и результатами объективного изучения психики.

Игорь Сергеевич Дикий , Людмила Александровна Дикая , Юрий Александров , Юрий Иосифович Александров

Детская образовательная литература / Биология, биофизика, биохимия / Биология / Книги Для Детей / Образование и наука
Семь экспериментов, которые изменят мир
Семь экспериментов, которые изменят мир

В середине 80-х годов XX века английский биолог Руперт Шелдрейк выдвинул революционную теорию морфогенетических полей. Согласно его гипотезе, все природные системы — от кристаллов до растений и животных, включая человека и весь человеческий социум, — обладают коллективной памятью, определяющей их поведение, строение и внешние формы. В своем новом бестселлере Шелдрейк продолжает развивать свои идеи, но в еще более доступной и увлекательной форме. Общность сознания, лежащая в основе его теории морфогенетических полей, помогает ему не только объяснять различные паранормальные явления, такие, как телепатия или телекинез, но и вовлекать читателя в увлекательные эксперименты, связывающие воедино теорию с практикой.

Руперт Шелдрейк

Научная литература / Биология / Прочая научная литература / Образование и наука