Хотя это семейство лекарств колоссально повлияло на увеличение продолжительности жизни, с самого начала микробы, на которых оно было нацелено, начали отбиваться. Вскоре после того, как пенициллин применили для лечения солдат на Второй мировой войне, бактерии нашли пути сопротивления этому распространенному антибиотику. Понять, как бактерии могут не обращать внимания на тот или иной антибиотик, помогли элегантные эксперименты, проведенные в Висконсинском университете Джошуа Ледербергом (1925–2008), которого вдохновила на изучение генетики бактерий плодотворная статья 1944 года Эвери, Маклеода и Маккарти, определившая ДНК как «источник трансформации». Работая вместе с женой, Эстер Циммер Ледерберг, он показал, что линии бактерий, устойчивых к пенициллину, существовали до того, как пенициллин стали использовать для лечения, – это было частью важных исследований, за которые он получил Нобелевскую премию.
Чтобы нейтрализовать действие антибиотиков, устойчивые штаммы используют широкий спектр белков. Такие антибиотики, как тетрациклин и стрептомицин, привязываются к особому участку рибосомы, нарушая синтез белка, и один из эволюционных ответов микробов – смастерить такие рибосомы, с которыми антибиотик не сможет связаться. Некоторые микробы развили «откачивающие помпы» – белки, выбрасывающие антибиотик наружу раньше, чем он успеет подействовать. Некоторые устойчивые штаммы закутываются в непроницаемые оболочки. Иные микробы даже «едят» антибиотики{246}
. Механизмов устойчивости столько{247}, что кое-кто поговаривает даже о «резистоме»{248}.Поскольку бактерии делятся очень быстро, любые устойчивые штаммы скоро начинают преобладать в популяции. Они используют и другой механизм распространения резистентности: они могут меняться программами ДНК в ходе горизонтального переноса генов. Ледерберг показал один из способов, которым они могут это делать: через межклеточные контакты или формирование цитоплазматических мостиков{249}
. На молекулярном уровне они обмениваются плазмидами, которые могут содержать несколько генов устойчивости к антибиотикам. Если эта передача прошла успешно, родился супервозбудитель.Появление резистентных организмов было неизбежно, но, к сожалению, оно было пришпорено слабым санитарным контролем, в изрядной степени сводившимся к гигиене и мытью рук или отсутствию этого навыка. Рост резистентности также ускорялся неразборчивым применением антибиотиков, особенно на фермах; неправильным употреблением (например, для лечения вирусных инфекций вроде обычной простуды); недоиспользованием, когда курс лечения не завершен; и чрезмерным использованием – в мыле и других хозяйственных средствах. В довершение всех бед нынешние рыночные условия мало стимулируют компании предпринимать тяжкие труды по разработке новейших антибиотиков. В отличие от сердечных лекарств и других средств, антибиотики принимают только неделю или около того. А неуклонный рост резистентности означает, что любой антибиотик обречен довольно скоро стать бесполезным, так что срок жизни нового антибиотика на аптечной полке тоже ограничен.
Это наглядный пример дарвиновской эволюции – правда, с печальной моралью: золотой век антибиотиков может идти к концу. Есть бесчисленные примеры продвижения устойчивости: например, постоянный незваный гость больниц, резистентный к метициллину
Геномика может сильно помочь. Мы можем картировать распространение супервозбудителя, узнать, как он противостоит антибиотику, и найти новые цели для лекарств. Мы можем также привлечь синтетическую геномику для разработки альтернатив антибиотикам. Подход, которому следуем мы, – это возврат к антибактериальному лечению, именуемому фаготерапией, в которой для того, чтобы убить микроба, используются бактериофаги, специфичные для данной линии бактерий. Каждые несколько дней фаги убивают половину бактерий на Земле{251}
. Можем ли мы рассчитывать на их помощь в борьбе с супервозбудителями?