Читаем Жизнь науки полностью

определенную систему через всю последовательность ее конфигураций, а установить, как будет распределено все число систем между различными возможными конфигурациями и скоростями в любой требуемый момент, если такое распределение было задано для какого-либо момента времени. Основным уравнением при таком исследовании является уравнение, дающее скорость изменения числа систем, заключенных внутри определенных малых границ конфигурации и скорости.

Такие исследования Максвелл называл статистическими. Они принадлежат к отрасли механики, обязанной своим происхождением стремлению объяснить законы термодинамики, исходя из механических принципов, и основанной, главным образом, Клаузиусом, Максвеллом и Больцманом. Первые исследования в этой области были в действительности несколько уже, чем описано выше, ибо они применялись скорее к частицам системы, чем к независимым системам. В дальнейшем статистические исследования были распространены на фазы (или состояния по конфигурации и скорости), сменяющие одна другую в данной системе с течением времени. Явное рассмотрение большого числа систем, их распределения по фазам и постоянства или изменения этого распределения с течением времени впервые встречается, вероятно, в статье Больцмана «О связи между теоремой об отношении теплоемкости многоатомных молекул газа и принципом последнего множителя Якоби» (1871).

Но, несмотря на то, что статистическая механика исторически обязана своим возникновением исследованиям в области термодинамики, она, очевидно, в высокой мере заслуживает независимого развития как в силу элегантности и простоты ее принципов, так и потому, что она приводит к новым результатам и проливает новый свет на старые истины в областях, совершенно чуждых термодинамике. Кроме того, самостоятельное построение этой отрасли механики, по-видимому, предоставляет наилучшую основу для изучения рациональной термодинамики и молекулярной механики.

Законы термодинамики, определенные эмпирически, выражают приблизительное и вероятное поведение систем, состоящих из большого числа частиц или, точнее, они выражают законы механики подобных систем так, как они представляются существам, не обладающим достаточной тонкостью восприятия для того, чтобы оценивать величины порядка тех, которые относятся к отдельным частицам, и не могущим повторять свои опыты настолько часто, чтобы получить какие бы то ни было результаты, кроме наиболее вероятных. Законы статистической механики применимы к консервативным системам с любым числом степеней свободы и являются точными. Это не значит, что эти законы труднее установить, нежели приближенные законы для систем с очень большим числом степеней свободы или для специальных классов таких систем. Скорее верно обратное, так как наше внимание не отвлекается от того, что существенно обусловлено особенностями рассматриваемой системы, и мы не можем удовлетвориться предположением, что эффект величин и обстоятельств, которыми мы пренебрегли, в полученном результате можно будет также не принимать во внимание. Законы термодинамики легко могут быть получены из принципов статистической механики, неполным выражением которых они являются, но сами они являются, пожалуй, несколько слепым проводником в наших поисках этих законов. В этом, вероятно, главная причина медленности развития рациональной термодинамики, контрастирующей с быстрым выводом следствий из ее эмпирических законов» К этому необходимо прибавить, что рациональная основа термодинамики относилась к отрасли механики, основные понятия, принципы и характерные операции которой были равно непривычны исследователям, работавшим в области механики.

Мы можем, следовательно, быть достаточно уверенными, что ничто так не способствует ясному пониманию связи термодинамики с рациональной механикой и истолкованию наблюдаемых явлений с точки зрения молекулярного строения тел, как изучение основных понятий и принципов-того отдела механики, которому термодинамика особенно родственна.

Более того, мы избегаем серьезных затруднений, когда, отказываясь от попытки очертить гипотезу о строении материальных тел, мы пользуемся статистическими исследованиями как отраслью рациональной механики. В настоящей стадии развития науки едва ли возможно дать динамическую теорию молекулярного действия, охватывающую явления термодинамики, излучения и электрические явления, сопутствующие соединению атомов. Однако всякая теория, которая не принимает во внимание всех этих явлений, очевидно, является неполноценной. Даже если мы ограничим наше внимание явно термодинамическими явлениями, мы не избегнем затруднений в таком простом вопросе, как число степеней свободы двухатомного газа. Хорошо известно, что, хотя теория приписывает каждой молекуле газа шесть степеней свободы, наши опыты с теплоемкостью приводят к учету не более чем пяти степеней. Конечно, тот, кто основывает свою работу на гипотезах, касающихся строения материи, стоит на ненадежном фундаменте.

Перейти на страницу:

Похожие книги

1С: Предприятие. Торговля и склад
1С: Предприятие. Торговля и склад

Целью написания данной книги является создание руководства по работе с программным продуктом «1С: Предприятие» конфигурация «Торговля+Склад».В книге использован язык, понятный и доступный не только «продвинутым» пользователям системы «1С: Предприятие», но и людям, которые впервые будут с ней знакомиться. Данное руководство окажется полезным как пользователям, которые занимаются настройкой параметров учета, конфигурированием системы (построением структуры номенклатуры, структуры контрагентов и т. п.), проведением анализа введенной информации (формированием и анализом различных отчетов на основе введенных данных), так и пользователям, которые используют в своей работе узкий круг функций и возможностей системы «1С: Предприятие» (операторам, кладовщикам, кассирам, продавцам).Издание подготовлено при содействии Агентства Деловой Литературы «Ай Пи Эр Медиа»

Игорь Сергеевич Суворов

Финансы / Прочая научная литература / Образование и наука