Читаем Жизнь науки полностью

Затруднения этого рода удержали автора от попыток объяснения тайн природы и заставили его удовлетвориться более скромной задачей вывода некоторых более очевидных положений, относящихся к статистической отрасли механики. При этом здесь уже не может быть ошибки с точки зрения согласия гипотез с фактами природы, ибо в этом отношении ничего и не предполагается. Единственной ошибкой, в которую можно впасть, является недостаточное согласие между предпосылками и выводами, а этого, при некоторой осторожности, можно надеяться в основном избежать.

Предметом настоящей книги являются в значительной мере результаты, полученные упомянутыми выше исследователями, хотя точка зрения и расположение материала могут быть отличными. Эти результаты, предлагаемые нами читателю один за другим в порядке их открытия, в их первоначальном изложении по необходимости не были расположены наиболее логичным образом.

В первой главе мы рассматриваем упомянутую уже общую проблему и находим соотношение, которое может быть названо основным уравнением статистической механики. Частный случай этого уравнения дает условие статистического равновесия, т.е. условие, которому должно удовлетворять распределение систем по фазам для того, чтобы распределение было постоянным. В общем случае основное уравнение допускает интегрирование, в результате которого мы получаем принцип, который, в зависимости от точки зрения, с какой он рассматривается, можно выражать различно — как принцип сохранения фазовой плотности, фазового объема или вероятности фазы.

Во второй главе мы применяем этот принцип сохранения вероятности фазы к теории ошибок вычисленных фаз системы, когда определение произвольных постоянных интегралов уравнения является сомнительным. В этом приложении мы не выходим из пределов обычных приближений. Другими словами, мы сочетаем принцип сохранения вероятности фазы, являющийся точным, с теми приближенными соотношениями, которые обычно принимаются в «теории ошибок».

В третьей главе мы применяем принцип сохранения фазового объема к интегрированию дифференциальных уравнений движения. Таким образом, как показал Больцман, мы получаем «последний множитель» Якоби.

В четвертой и последующих главах мы возвращаемся к рассмотрению статистического равновесия и сосредотачиваем наше внимание на консервативных системах. Мы рассматриваем в особенности ансамбли систем, в которых показатель (или логарифм) вероятности фазы является линейной функцией энергии. Это распределение, благодаря его особенному значению в теории статистического равновесия, я решился назвать каноническим, а делитель энергии — модулем распределения. Модули ансамблей имеют свойства, аналогичные температуре, в силу того, что равенство модулей является условием равновесия по отношению к обмену энергии, когда такой обмен является возможным.

Мы находим дифференциальное уравнение, относящееся к средним значениям по ансамблю и идентичное по форме с основным дифференциальным уравнении термодинамики, причем средний показатель вероятности фазы с обратным знаком соответствует энтропии и модуль — температуре.

Для среднего квадрата флюктуаций энергии мы находим выражение, исчезающе малое по сравнению с квадратом средней энергии, когда число степеней свободы неопределенно возрастает. Ансамбль систем, в котором число степеней свободы того же порядка, что и число молекул в телах, с которыми мы экспериментируем, при каноническом распределении покажется человеческому наблюдению ансамблем систем, обладающих одинаковой энергией.

При дальнейшем развитии темы мы встречаемся и с другими величинами, которые при очень большом числе степеней свободы в основном совпадают с модулем и с средним показателем вероятности канонического' ансамбля, взятым с обратным знаком, и которые, следовательно, также можно считать соответствующими температуре и энтропии. Однако, если число степеней свободы не очень велико, то соответствие является неполным и введение этих величин не имеет никаких оснований кроме того, что они могут считаться более простыми по определению, нежели величины, упомянутые выше. В главе XIV это исследование термодинамических аналогий развивается несколько подробнее.

Наконец, в главе XV предыдущие результаты подвергаются некоторому видоизменению, необходимому, когда мы рассматриваем системы, состоящие из совершенно подобных частиц или даже из частиц нескольких родов, если только все частицы каждого рода совершенно подобны друг другу, и когда одним из подлежащих рассмотрению изменений является изменение чисел частиц различных родов, содержащихся в системе. Это предположение естественно было бы ввести раньше, если бы нашей целью являлось просто выражение законов природы. Нам показалось, однако, желательным четко отделить чисто термодинамические законы от тех их специальных модификаций, которые относятся скорее к теории свойств вещества,

Нью-Хэйвен.

Декабрь 1901 г.

V. ХИМИЯ

ЛАВУАЗЬЕ

(1743—1794)


Перейти на страницу:

Похожие книги

1С: Предприятие. Торговля и склад
1С: Предприятие. Торговля и склад

Целью написания данной книги является создание руководства по работе с программным продуктом «1С: Предприятие» конфигурация «Торговля+Склад».В книге использован язык, понятный и доступный не только «продвинутым» пользователям системы «1С: Предприятие», но и людям, которые впервые будут с ней знакомиться. Данное руководство окажется полезным как пользователям, которые занимаются настройкой параметров учета, конфигурированием системы (построением структуры номенклатуры, структуры контрагентов и т. п.), проведением анализа введенной информации (формированием и анализом различных отчетов на основе введенных данных), так и пользователям, которые используют в своей работе узкий круг функций и возможностей системы «1С: Предприятие» (операторам, кладовщикам, кассирам, продавцам).Издание подготовлено при содействии Агентства Деловой Литературы «Ай Пи Эр Медиа»

Игорь Сергеевич Суворов

Финансы / Прочая научная литература / Образование и наука