Читаем Жизнь науки полностью

После того как мы рассмотрели общее значение проблемы в математике, обратимся к вопросу о том, из какого источника математика черпает свои проблемы. Несомненно, что первые и самые старые проблемы каждой математической области знания возникли из опыта и поставлены над миром внешних явлении. Даже иршикп счета с целыми числами были открыты на этом пути еще на ранней ступени культурного развития человечества так же, как и теперь ребенок познает применение этих правил эмпирическим методом. То же относится к первым проблемам геометрии — пришедшим к нам из древности задачам удвоения куба, квадратуры круга, а также к старейшим проблемам теории численных уравнений, теории кривых, дифференциального и интегрального исчислений, вариационного исчисления, теории рядов Фурье и теории потенциала, но говоря уже о всем богатстве проблем собственно механики, астрономии и физики.

При дальнейшем развитии какой-либо математической дисциплины человеческий ум, обнадеженный удачами, проявляет уже самостоятельность; он сам ставит новые и плодотворные проблемы, часто без заметного влияния внешнего мира, с помощью только логического сопоставления, обобщения, специализирования, удачного расчленения и группировки понятий и выступает затем сам на первый план как постановщик задач. Так возникли задача о простых числах и другие задачи арифметики, теория Галуа, теория алгебраических инвариантов, теория абелевых и автоморфных функций и так возникали почти все тонкие вопросы современной теории чисел и теории функций.

А между тем во время действия созидательной силы чистого мышления внешний мир снова настаивает на своих правах: он навязывает нам своими реальными фактами новые вопросы и открывает нам новые области математического знания. И в процессе включения этих новых областей знания в царство чистой мысли мы часто находим ответы на старые нерешенные проблемы и таким путем наилучшпм образом продвигаем вперед старые теории. На этой постоянно повторяющейся и сменяющейся игре между мышлением и опытом, мне кажется, и основаны те многочисленные и поражающие аналогии и та кажущаяся предустановленная гармония, которые математик так часто обнаруживает в задачах, методах и понятиях различных областей знания.

Остановимся еще кратко на вопросе о том, каковы могут быть общие требования, которые мы вправе предъявить к решению математической проблемы. Я имею в виду прежде всего требования, благодаря которым удается убедиться в правильности ответа с помощью конечного числа заключений и притом на основании конечного числа предпосылок, которые кладутся в оспову каждой задачи и которые должны быть в каждом случае точно сформулированы. Это требование логической дедукции с помощью конечного числа заключений есть не что иное, как требование строгости проведения доказательств. Действительно, требование строгости, которое в математике уже вошло в поговорку, соответствует общей философской потребности нашего разума; с другой стороны, только выполнение этого требования приводит к выявлению полного значения существа задачи и ее плодотворности. Новая задача, особенно если она вызвана к жизни явлениями внешнего мира, подобна молодому побегу, который может расти и приносить плоды, лишь если он будет заботливо и по строгим правилам искусства садоводства взращиваться на старом стволе — твердой основе нашего математического знания.

Будет большой ошибкой думать при этом, что строгость в доказательстве — это враг простоты. Многочисленные примеры убеждают нас в противоположном: строгие методы являются в то же время простейшими и наиболее доступными. Стремление к строгости как раз и приводит к отысканию простейших доказательств. Это же стремление часто прокладывает путь к методам, которые оказываются более плодотворными, чем старые менее строгие методы. Так, теория алгебраических кривых благодаря более строгим методам теории функций комплексного переменного и целесообразному применению трансцендентных средств значительно упростилась и приобрела большую цельность. Далее, доказательство правомерности применения четырех элементарных арифметических действий к степенным рядам, а также почленного дифференцирования и интегрирования этих рядов и основанное на этом признание степенного ряда, несомненно, значительно упростили весь анализ, в частности, теорию исключения и теорию дифференциальных уравнений (вместе с ее теоремами существования).

Перейти на страницу:

Похожие книги

1С: Предприятие. Торговля и склад
1С: Предприятие. Торговля и склад

Целью написания данной книги является создание руководства по работе с программным продуктом «1С: Предприятие» конфигурация «Торговля+Склад».В книге использован язык, понятный и доступный не только «продвинутым» пользователям системы «1С: Предприятие», но и людям, которые впервые будут с ней знакомиться. Данное руководство окажется полезным как пользователям, которые занимаются настройкой параметров учета, конфигурированием системы (построением структуры номенклатуры, структуры контрагентов и т. п.), проведением анализа введенной информации (формированием и анализом различных отчетов на основе введенных данных), так и пользователям, которые используют в своей работе узкий круг функций и возможностей системы «1С: Предприятие» (операторам, кладовщикам, кассирам, продавцам).Издание подготовлено при содействии Агентства Деловой Литературы «Ай Пи Эр Медиа»

Игорь Сергеевич Суворов

Финансы / Прочая научная литература / Образование и наука