Читаем Жизнь науки полностью

Мы все знаем, как, не давая еще точного определения, разъясняют начинающим идею непрерывности. Им чертят красивую кривую и, прикладывая к ней линейку, говорят: «Вы видите, что во всякой точке этой кривой есть касательная». Или, желая дать абстрактное понятие об истинной скорости точки в каком-нибудь пункте ее траектории, говорят: «Вы понимаете, конечно, что средняя скорость между двумя соседними точками перестает изменяться ощутительным образом при бесконечном сближении точек». И действительно, очень многие, припоминая, что в движениях, к которым они привыкли, было что-то подобное, не видят в этом больших затруднений.

Но математики, конечно, давно поняли недостаток строгости в этих «доказательствах», называемых геометрическими; поняли, как наивно было бы доказывать, проводя на доске кривую, что всякая непрерывная функция имеет производную. Ведь, на самом деле, как ни просты функции, имеющие производную, как ни легко излагать учение о них, они представляются лишь исключениями; или, выражаясь более геометрически, кривые, не имеющие касательной, являются правилом, а правильные кривые, вроде круга, суть весьма частные, хотя и очень интересные случаи.

На первый взгляд эти ограничения представляются чистой игрой ума, очень интересной, но искусственной и бесплодной, до которой довела ученых мания определять все с совершенной точностью. Очень часто те, которым твердят о кривых, не имеющих касательной, или о функциях, не имеющих производной, начинают думать, что в природе, очевидно, не встречается таких сложных отношений, и она не подает никакого повода для такого рода мыслей.

На самом деле, однако, справедливым оказывается именно противоположное: математическая логика удержала математиков в такой близости к реальности, о какой не давали понятия представления физиков. Это легко понять, если размыслить над некоторыми чисто опытными фактами, не задаваясь идеей упрощения.

Такие факты представляются в изобилии при изучении коллоидов. Будем наблюдать, например, хлопья, получающиеся в мыльной воде, если к ней подсыпать соли. Издали очертания хлопьев могут показаться вполне оцределенными, но, если мы взглянем на них поближе, то всякая определенность исчезает. Глаз не сумеет провести касательную в какой-нибудь точке; прямую, которую мы при первом взгляде были бы готовы назвать касательной, при большем напряжении внимания с таким же правом можно считать перпендикуляром или секущей по отношению к контуру. Если взять лупу или микроскоп, то неуверенность только увеличится, и чем большее увеличение мы возьмем, тем больше увидим новых извивов; у нас не будет того определенного, успокаивающего впечатления, какое производит, например, стальной гладко полированный шарик. И если шарик может служить для нас моделью классической непрерывности, то хлопья мыла будут служить, с полным логическим основанием, иллюстрацией более общего понятия о непрерывных функциях, не имеющих производных.

Нужно заметить, что неопределенность при определении положения касательной плоскости к некоторому контуру не совсем того порядка, как неопределенность, с которой мы встретились бы, если бы вздумали провести, например, касательную в какой-либо точке береговой линии Бретани, пользуясь для этого картой того или другого масштаба. Сообразно с масштабом, положение касательной менялось бы, по в каждой точке можно провести только одну касательную. И это потому, что карта ость лишь условный чертеж, где уже по построению всякая линия имеет касательную. Напротив, для наших хлопьев характерно (как и для берега, если вместо того, чтобы изучать его очертания по карте, мы рассматривали бы его непосредственно с более или менее далекого расстояния) именно то, что, в каком бы то ни было масштабе, мы подозреваем в структуре такие детали, которые абсолютно не позволяют придать дааса-тельпой какого-либо определенного положения.

Равным образом мы остаемся в области реальности, доступной опыту, когда, приближая глаз к микроскопу, видим броуновское движение, волнующее каждую частицу эмульсин, плавающую в жидкости. Для того чтобы провести касательную к ее траектории, мы должны были бы найти, хотя приблизительно, предельное положение прямой, соединяющей два положения частицы, взятые в два момента времени, очень близкие друг к другу. Но, поскольку позволяет судить опыт, это направление меняется положительно сумасшедшим образом по мере того, как мы уменьшаем промежуток времени, разделяющий эти моменты. Таким образом, у непредубежденного наблюдателя в процессе наблюдения слагается мысль, что здесь перед ним функция, не имеющая производной, а не кривая, имеющая касательную.

Я говорил пока о контуре или о кривой, так как обыкновенно пользуются кривыми, чтобы на них выяснить понятие о непрерывности. Не было бы логически равноценным, а с физической точки зрения даже и более общим, рассматривать изменение от точки к точке какого-нибудь другого свойства материи, например плотности или цвета. И в этом случае мы встретились бы с совершенно подобными сложностями.

Перейти на страницу:

Похожие книги

1С: Предприятие. Торговля и склад
1С: Предприятие. Торговля и склад

Целью написания данной книги является создание руководства по работе с программным продуктом «1С: Предприятие» конфигурация «Торговля+Склад».В книге использован язык, понятный и доступный не только «продвинутым» пользователям системы «1С: Предприятие», но и людям, которые впервые будут с ней знакомиться. Данное руководство окажется полезным как пользователям, которые занимаются настройкой параметров учета, конфигурированием системы (построением структуры номенклатуры, структуры контрагентов и т. п.), проведением анализа введенной информации (формированием и анализом различных отчетов на основе введенных данных), так и пользователям, которые используют в своей работе узкий круг функций и возможностей системы «1С: Предприятие» (операторам, кладовщикам, кассирам, продавцам).Издание подготовлено при содействии Агентства Деловой Литературы «Ай Пи Эр Медиа»

Игорь Сергеевич Суворов

Финансы / Прочая научная литература / Образование и наука