По классическому представлению, мы можем разложить всякий предмет на столь мелкие части, что они будут практически однородными. Другими словами, считается, что по мере постепенного сжатия контура, различия в свойствах
материи внутри этого контура делаются все менее и менее резкими.Однако, если такое представление и не опровергается опытом, то все же можно сказать, оно крайне редко подтверждается наблюдаемыми фактами. Наш глаз тщетно будет искать практически однородную
область, хотя бы и чрезвычайно малую, на поверхности руки, письменного стола, деревьев или почвы. И если бы нам показалось возможным ограничить достаточно однородную площадку, положим, на поверхности древесного ствола, то достаточно подойти поближе, чтобы разглядеть на коре дерева предполагавшиеся детали и заподозрить существование еще новых более мелких деталей. Если наш глаз не в силах уже различить их, мы прибегаем к лупе или микроскопу; и тогда, наблюдая при возрастающем увеличении выбранные нами участки, мы открываем на них все новые и новые детали, и, наконец, дойдя до предела возможного увеличения, мы видим изображение дифференцированным значительно больше, чем то, которое мы наблюдали невооруженным глазом. Живая клетка, например, совсем не однородна: в ней можно различить сложную структуру, состоящую из нитей и зерен, плавающих в неоднородной плазме; глаз угадывает там еще какие-то особенности, которые он бессилен воспринять более определенно. Таким образом, кусочек материи, который, как мы рассчитывали сначала, мог бы оказаться однородным, на самом деле оказывается «бесконечно губчатого» строения, и для нас не остается никакой надежды отыскать в конце концов «однородный» или, по крайней мере, такой кусочек вещества, свойства которого изменялись бы от точки к точке в правильной последовательности.Не нужно думать, что только живая материя представляется нам бесконечно губчатой, бесконечно дифференцированной. Обуглив только что изученный нами кусочек коры, мы получаем кусочек древесного угля с бесчисленными порами. Не легко разложить на малые однородные части почвы, горные породы. И, пожалуй, единственными образчиками вещества, непрерывного в своих свойствах, окажутся кристаллы вроде алмаза, жидкости вроде воды и газы. Таким образом, понятие непрерывности составлено нами в результате совершенно произвольного подбора и сопоставления данных опыта.
Впрочем, следует помнить, что, несмотря на то, что внимательное исследование заставляет нас вообще считать строение изучаемых объектов в высшей степени неправильным, мы можем с пользой для дела приблизительно представить свойства их при помощи непрерывных функций. Хотя дерево бесконечно губчато, но мы говорим о поверхности бревна, которую нужно обстругать, или об объеме воды, вытесненном обрубком, как о чем-то непрерывном. Можно будет иной раз сказать, с некоторой дозой преувеличения, что правильная непрерывность может служить изображением явлений, подобно тому как листок олова, которым мы вздумали бы обернуть губку, воспроизводил бы ее контуры в общих чертах, не следуя за тонкими и сложными ее извивами.
жащую в данный момент массу т/г. Частное m/v
есть средняя плотность внутри этой сферы, а предел этого отношения называют истинной плотностью в данной точке. Это равносильно утверждению, что в данный момент средняя плотность внутри малой сферы постоянна, если только* мы не выходили из известных пределов объема. Средняя плотность может оказаться несколько различной, если один раз мы будем брать сферу в 1000 куб. метров, а в другой раз в 1 куб. см; но в случае изменения размеров сферы от 1 куб. см до 1 куб. мм она не изменится более чем на 1/1000 000. Но в этих пределах рассматриваемых объемов будут иметь место неправильные изменения плотности, порядка одной миллиардной (причем уклонения от среднего значения весьма завпсят от движений, существующих в нашем веществе).Будем, далее, уменьшать объем. Колебания плотности не только не* выравняются, но сделаются еще значительнее и еще беспорядочнее. Возьмем размеры сферы в 1/10 куб. микрона (в таких малых объемах весьма сильно дает себя чувствовать броуновское движение)колебания плотности могут достичь (для воздуха) размера 1/1000 средней величию* плотности; если размеры сферы сделаются в 1/100 куб. микрона, то колебания дойдут до значения в 1/5 средней плотностп.