Скорее всего, Байес впервые заинтересовался проблемой вероятности, прочитав «Трактат о человеческой природе» шотландского философа Дэвида Юма. Юм усомнился в обоснованности индуктивного метода, доминировавшего в науке с начала эпохи Просвещения, и сформулировал философскую проблему, которая стала известна как проблема обоснования индукции. Как упоминается в главе 10, идея использования метода индукции для получения научно обоснованных результатов на основании серии наблюдений принадлежала Фрэнсису Бэкону. Например, наблюдая за тем, что Солнце встает каждое утро на протяжении всей истории человечества, мы можем, используя метод индукции, сделать вывод о том, что так происходит всегда. Юм отмечал, что такой вывод не подкрепляется вескими доводами. Предположение, что «поскольку Солнце всегда встает по утрам, значит, оно встанет и завтра», не более доказуемо, чем предположение, что «Солнце всегда встает по утрам, однако не взойдет завтра». Оба предположения не противоречат имеющимся данным и совпадают по логическим и эмпирическим основаниям. Юм утверждал, что выводы, сделанные на основе индуктивных умозаключений, говорят лишь о вероятности, а не об определенности.
Байес принял это утверждение Юма, однако сделал ставку на вероятность, полагая, что из нее можно извлечь пользу. Он решил проверить свою интуицию математически. Вероятно, по делам службы ему приходилось заниматься сбором благотворительных средств, а для этого ему доводилось участвовать во всевозможных лотереях и розыгрышах призов. Неслучайно он начинает свою книгу с того, что предлагает читателям «представить человека, который пришел на розыгрыш лотереи, не зная, как она организована, и не представляя соотношения выигрышных и невыигрышных билетов». Здесь я предлагаю заменить лотерею на игральные кости, чтобы нам было проще оценить роль бритвы Оккама в байесовской статистике. Представим, что у друга преподобного мистера Байеса, мистера Прайса, есть две игральные кости. Одна из них обычная, в виде шестигранного кубика, а другая, более сложная, имеет 60 граней. Далее представим себе, что мистер Прайс предлагает своему другу сыграть в такую игру: стоя за ширмой, он будет бросать кубик, называя выпавшее число, а мистер Байес должен угадать, какой кубик брошен.
Рис. 38.
Вероятно, поначалу интуиция преподобного Байеса подсказывает, что это может быть любой кубик. Используя современные статистические термины применительно к посмертно опубликованной работе Байеса, мы назовем эту вероятность
Байес применил этот метод вычисления и при расчете аналогичной вероятности для шестигранного кубика, умножив априорную вероятность 0,5 на условную вероятность того, что выпадет число 29. В результате получился ноль, поскольку в шестиграннике нет ни одной грани, которая бы показывала число 29. Умножая любое число на ноль, мы получаем ноль, таким образом, апостериорная вероятность, что число 29 выпадет на шестигранном кубике, равна нулю. Сравнивая значения двух апостериорных вероятностей, Байес представил их как соотношение 0,008/0. Поскольку деление любого числа на ноль дает бесконечность, относительная вероятность того, что число 29 выпадет на шестидесятигранном кубике, бесконечна. А это значит, вероятность того, что Прайс бросил кубик с шестьюдесятью гранями, возрастает в бесконечное количество раз. Одно очко в пользу Байеса.