Читаем Жизнь замечательных веществ полностью

Степень окисления элемента в молекуле хотя и носит формальный характер (степень окисления атома в соединении численно равна величине электрического заряда, приписываемого атому, исходя из предположения, что соединение состоит только из ионов), является важным средством классификации электронного состояния молекул, а также параметром, определяющим строение молекулы и особенности химического связывания. Длительное время предполагалось, что максимально возможной степенью окисления может быть +8, причем вещества, в которых такая степень окисления проявлялась, можно было пересчитать, задействуя для этого пальцы одной руки – это высшие оксиды рутения, ксенона, иридия и осмия – RuO4, XeO4, IrO4 и OsO4 соответственно. В этих соединениях от центрального атома происходит отток большого количества электронов валентного уровня – эти электроны смещаются к электроотрицательному кислороду.


Тем не менее в 2014 году международная группа исследователей совершила практически невозможное, получив устойчивый оксокатион [IrO4]+ – первый пример объекта, в котором иридий характеризуется формальной степенью окисления +9 и в образовании которой участвуют электроны не только внешнего, но и предвнешнего слоя электронной оболочки иридия (Nature 2014, DOI: 10.1038/nature13795).



Как отмечает Грегори Джиролами (Gregory S. Girolami), эксперт по неорганической химии из Университета Иллинойса (Урбана-Шампейш, США), само заявление о том, что частица, содержащая элемент в степени окисления +9, может быть настолько устойчива, что его удастся выделить на препаративном уровне, кажется подрыванием устоев теоретической химии. Если рано или поздно удастся выделить устойчивое соединение, содержащее катион [IrO4]+ (пока он был зафиксирован только в газовой фазе), такое соединение иридия будет достойно приглашения в элитный клуб химических веществ, в котором уже находятся производные инертных газов, существующие, несмотря на то, что когда-то их существование отрицалось всеми возможными концепциями теоретической химии.

Из всех четырёх оксидов состава ХО4 иридий стоит особняком: для иридия, конфигурацию валентного уровня которого можно описать как 5d76s2, формально можно говорить о наличии девяти валентных электронов, а в оксиде IrO4, допуская на уровне обычного приближения для вычисления степени окисления то, что все электроны иридия переходят к атомам кислорода, электронную конфигурацию иридия можно было бы представить как 5d1.

Теоретическое исследование электронной конфигурации полученного в 2009 году IrO4 позволяло предположить, что последний электрон с d-орбитали иридия может быть удален и, в результате чего будет получен устойчивый катион оксида иридия [IrO4]+, степень окисления иридия в котором будет +9.

Исследовательским группам из Университета Альберта Людвига (Германия), Университета Фудана (Шанхай), Университета Циньхуа (Пекин) и Университета МакМастера (Гамильтон, провинция Онтарио, Канада) удалось заставить иридий исполнить предсказанное теоретически, и этот металл стал элементом, для которого получены производные с когда-то считавшейся невозможной степенью окисления.

Для получения [IrO4]+ исследователи обрабатывали мишень из металлического иридия, помещенную в атмосферу аргона, содержащего следовые количества кислорода, импульсами лазера. Продукты реакции изучали с помощью масс-спектрометрии и спектроскопии инфракрасной фотодиссоциации, с помощью которых и удалось обнаружить частицу [IrO4]+. Соотнесение же результатов эксперимента с расчетами позволило определить, что наиболее устойчивая геометрическая конфигурация [IrO4]+ – тетраэдр, в вершинах которого располагается четыре атома кислорода, образующих с центральным атомом двойные связи Ir=O.

На следующем этапе исследователи предприняли попытку выделить соль с катионом [IrO4]+, обрабатывая тетроксид иридия сильными окислителями, такими как O2SbF6 и XeF6. Хотя на настоящий момент времени им не удалось подобрать условия реакции для получения конденсированного соединения с [IrO4]+, однако они не теряют надежды и продолжают попытки.



Как отмечает специалист по квантовохимическим расчетам, занимавшийся в том числе и моделированием строения и свойств соединений иридия в различных степенях окисления, Пекка Пиикко (Pekka Pyykkö) из Университета Хельсинки, доказательство возможности существования степени окисления +9 имеет значение не меньшее, а может даже и большее, чем открытие нового химического элемента. Частица, содержащая иридий Ir(+9), расширяет список возможных положительных степеней окисления иридия – фактически в настоящее время известны соединения иридия, в которых степень окисления пробегает все положительные значения от Ir(+1) до Ir(+9), а также две устойчивые отрицательные степени окисления.


Рекордно большое координационное число равно 16


Перейти на страницу:

Все книги серии Научпоп Рунета

Чердак. Только физика, только хардкор!
Чердак. Только физика, только хардкор!

Знаете ли вы, что такое время? А как придумали теорию струн? Какой химический элемент – самый большой в мире? А вот Дмитрий Побединский, физик, популярный видеоблогер и постоянный автор «Чердака», знает – и может рассказать!Существуют ли параллельные вселенные?Можно ли создать настоящий световой меч?Что почувствует искусственный интеллект при первом поцелуе?Как устроена черная дыра?На эти и другие вопросы, которые любого из нас способны поставить в тупик, отвечает Дмитрий – легко и доступно для каждого из нас.«Чердак: наука, технологии, будущее» – научно-образовательный проект крупнейшего российского информационного агентства ТАСС. Для 100 000 своих читателей команда «Чердака» каждый день пишет о науке – российской и не только, – а также рассказывает об интересных научно-популярных лекциях, выставках, книгах и кино, показывает опыты и отвечает на научные (и не очень) вопросы об окружающей действительности.В формате pdf A4 сохранен издательский дизайн.

Дмитрий Михайлович Побединский

Научная литература
Математика для гиков
Математика для гиков

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.

Рафаель Роузен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука
Модицина. Encyclopedia Pathologica
Модицина. Encyclopedia Pathologica

Эта книга – первый нескучный научпоп о современной медицине, о наших болячках, современных лекарствах и человеческом теле. Никита Жуков, молодой врач-невролог из Санкт-Петербурга, автор ультрапопулярного проекта «Encyclopatia» (от Encyclopedia pathologicae – патологическая энциклопедия), который посещают более 100 000 человек в день.«Модицина» – это критика традиционных заблуждений, противоречащих науке. Серьезные дядьки – для которых Никита, казалось бы, не авторитет – обсуждают его научно-сатирические статьи на медицинских форумах, критикуют, хвалят и спорят до потери пульса.«Минуту назад вы знали, что такое магифрения?» – encyclopatia.ru.«Эта книга – другая, не очень привычная для нас и совершенно непривычная для медицины форма, продолжающая традиции принципа Питера, закона Мерфи, закона Паркинсона в эпоху интернета», – Зорин Никита Александрович, M. D., психиатр, Ph.D., доцент, член президиума московского отделения Общества специалистов доказательной медицины (ОСДМ).В формате pdf A4 сохранен издательский дизайн.

Никита Жуков , Никита Эдуардович Жуков

Здоровье / Медицина / Энциклопедии / Прочая научная литература / Словари и Энциклопедии

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.

Скотт Бембенек

Научная литература
Кто бы мог подумать! Как мозг заставляет нас делать глупости
Кто бы мог подумать! Как мозг заставляет нас делать глупости

Книга молодого научного журналиста Аси Казанцевой — об «основных биологических ловушках, которые мешают нам жить счастливо и вести себя хорошо». Опираясь по большей части на авторитетные научные труды и лишь иногда — на личный опыт, автор увлекательно и доступно рассказывает, откуда берутся вредные привычки, почему в ноябре так трудно работать и какие вещества лежат в основе «химии любви».Выпускница биофака СПбГУ Ася Казанцева — ревностный популяризатор большой науки. Она была одним из создателей программы «Прогресс» на Пятом канале и участником проекта «Наука 2.0» на телеканале Россия; ее статьи и колонки публиковались в самых разных изданиях — от «Троицкого варианта» до Men's Health. «Как мозг заставляет нас делать глупости» — ее первая книга.

Анастасия Андреевна Казанцева , Ася Казанцева

Научная литература / Биология / Биохимия / Психология / Образование и наука