Читаем Жизнь замечательных веществ полностью

Диоксид титана может разрушать не только загрязнения на ткани – он способен бороться с микробами. В 2008 году исследователи из Университета Манчестера разработали краску, содержащую диоксид титана. Эта краска при облучении ультрафиолетом может убивать ряд бактерий, представляющих собой больничные инфекции, и, что особенно радостно, резистетнтые к антибиотикам штаммы кишечной палочки и золотистого стафилококка.

Диоксид титана – это не только чистые дома, чистые зубы, белое мороженое и чистые палаты в больницах – он ещё дает нам и чистую энергию: диоксид титана является важным компонентом солнечных батарей определенного типа (солнечных батарей, сенсибилизированных красителем). В таких солнечных батареях органические красители поглощают солнечный свет (как хлорофилл поглощает его в листьях зеленых растений), и в результате возбуждения светом электроны с этих красителей переходят в слой из диоксида титана, по которому идёт к электроду, и создается электрический ток.

Уже сейчас разнообразное применение диоксида титана приводит к повышению на него спроса и увеличению стоимости на 50 %, а если диоксид титана станет системой для эффективного получения водорода из воды, повысятся ещё больше.

<p>1.12. Ультрамарин</p>

Что общего у картин «Вокзал Сен-Лазар» Клода Моне и «Зонтики» Пьера-Огюста Ренуара? Оказывается, у них есть один общий химический компонент – синтетический ультрамарин.

Этот знаменитый синий пигмент был разработан в начале XIX века, однако долгое время метод его получения оставался тайной. Исследователям из Великобритании удалось раскрыть тайну древнего рецепта. Результаты этого исследования могут помочь реставраторам, а также экспертам по установлению подлинности живописи.

Ультрамарин всегда был окутан мистической аурой. До получения берлинской лазури он был единственным синим пигментом в Европе, получали его из лазурита, попадавшего в Европу с территории современного Афганистана или Индостанского полуострова (отсюда и название, означающее на латинском языке «заморский»). Малая доступность ультрамарина приводила к тому, что художники использовали ультрамарин только для отображения наиболее важных элементов, связанных с религиозной тематикой, например – одеяний Девы Марии или святого Петра.

Даже несмотря на появление синего синтетического пигмента, попытки воспроизвести синеву ультрамарина предпринимались неоднократно, и в 1824 году французское Общество воодушевления национальной промышленности пообещало приз тому, кто создаст технологию получения ультрамаринового пигмента стоимостью менее 300 франков за килограмм. Спустя 4 года приз получил французский химик Жан Баптист Жиме, при этом ряд других химиков также предложили свои рецептуры, видимо, менее эффективные.

Синтетический ультрамарин стал доступен для художников, однако рецепт его получения долгое время оставался тайной: даже в письменной заявке Жиме, выигравшей конкурс, отсутствовали важные детали протокола синтеза – температура и время.

Ян Хамертон из Университета Суррея (Великобритания) совместно с искусствоведами из группы Николаса Исто отыскали в архивах все исходные рецепты синтетического ультрамарина, чтобы понять, возможно ли восстановить исторически точную рецептуру. Как заявляет исследователь, воспроизведение старых рецептов шло методом проб и ошибок в интерпретации синтетических протоколов того времени, так, например, им приходилось подбирать температуру по фразе «нагревали на пламени вишневого цвета».

После окончательной расшифровки и практической отшлифовки старого рецепта исследователи продемонстрировали, что полученный ими ультрамарин полностью аутентичен историческим образцам (естественно, чтобы исключить субъективность, присущую человеческому восприятию, применялся спектральный анализ). Метод получения искусственного ультрамарина во всех деталях описан в статье, при этом исследователи отмечают, что метод нельзя назвать простым, в частности, одним из этапов является высвобождение серной кислоты при 500 °C.

Специалист по истории искусства Катлин Хонигер из Королевского университета Онтарио считает, что результаты исследования могут помочь реставраторам, которым зачастую необходимо воспроизвести условия создания полотна, добавляя, что из-за большого количества неточностей в рецептах XIX века их очень сложно воспроизводить, но это необходимо для сохранения культурного наследия.

Ну а для тех, кто хочет попробовать себя в реставрации Моне, встать на скользкий путь подделки картин или просто нарисовать что-то, используя синий пигмент, аутентичный пигментам Моне и Ренуара, вот вам рецепт, опубликованный в статье:

Перейти на страницу:

Все книги серии Научпоп Рунета

Чердак. Только физика, только хардкор!
Чердак. Только физика, только хардкор!

Знаете ли вы, что такое время? А как придумали теорию струн? Какой химический элемент – самый большой в мире? А вот Дмитрий Побединский, физик, популярный видеоблогер и постоянный автор «Чердака», знает – и может рассказать!Существуют ли параллельные вселенные?Можно ли создать настоящий световой меч?Что почувствует искусственный интеллект при первом поцелуе?Как устроена черная дыра?На эти и другие вопросы, которые любого из нас способны поставить в тупик, отвечает Дмитрий – легко и доступно для каждого из нас.«Чердак: наука, технологии, будущее» – научно-образовательный проект крупнейшего российского информационного агентства ТАСС. Для 100 000 своих читателей команда «Чердака» каждый день пишет о науке – российской и не только, – а также рассказывает об интересных научно-популярных лекциях, выставках, книгах и кино, показывает опыты и отвечает на научные (и не очень) вопросы об окружающей действительности.В формате pdf A4 сохранен издательский дизайн.

Дмитрий Михайлович Побединский

Научная литература
Математика для гиков
Математика для гиков

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.

Рафаель Роузен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука
Модицина. Encyclopedia Pathologica
Модицина. Encyclopedia Pathologica

Эта книга – первый нескучный научпоп о современной медицине, о наших болячках, современных лекарствах и человеческом теле. Никита Жуков, молодой врач-невролог из Санкт-Петербурга, автор ультрапопулярного проекта «Encyclopatia» (от Encyclopedia pathologicae – патологическая энциклопедия), который посещают более 100 000 человек в день.«Модицина» – это критика традиционных заблуждений, противоречащих науке. Серьезные дядьки – для которых Никита, казалось бы, не авторитет – обсуждают его научно-сатирические статьи на медицинских форумах, критикуют, хвалят и спорят до потери пульса.«Минуту назад вы знали, что такое магифрения?» – encyclopatia.ru.«Эта книга – другая, не очень привычная для нас и совершенно непривычная для медицины форма, продолжающая традиции принципа Питера, закона Мерфи, закона Паркинсона в эпоху интернета», – Зорин Никита Александрович, M. D., психиатр, Ph.D., доцент, член президиума московского отделения Общества специалистов доказательной медицины (ОСДМ).В формате pdf A4 сохранен издательский дизайн.

Никита Жуков , Никита Эдуардович Жуков

Здоровье / Медицина / Энциклопедии / Прочая научная литература / Словари и Энциклопедии

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.

Скотт Бембенек

Научная литература
Кто бы мог подумать! Как мозг заставляет нас делать глупости
Кто бы мог подумать! Как мозг заставляет нас делать глупости

Книга молодого научного журналиста Аси Казанцевой — об «основных биологических ловушках, которые мешают нам жить счастливо и вести себя хорошо». Опираясь по большей части на авторитетные научные труды и лишь иногда — на личный опыт, автор увлекательно и доступно рассказывает, откуда берутся вредные привычки, почему в ноябре так трудно работать и какие вещества лежат в основе «химии любви».Выпускница биофака СПбГУ Ася Казанцева — ревностный популяризатор большой науки. Она была одним из создателей программы «Прогресс» на Пятом канале и участником проекта «Наука 2.0» на телеканале Россия; ее статьи и колонки публиковались в самых разных изданиях — от «Троицкого варианта» до Men's Health. «Как мозг заставляет нас делать глупости» — ее первая книга.

Анастасия Андреевна Казанцева , Ася Казанцева

Научная литература / Биология / Биохимия / Психология / Образование и наука