То, что это соединение относится к комплексным (или координационным) соединениям, стало известно только после того, как Альфред Вернер разработал основы теории строения комплексных соединений. И хотя точный цвет пигмента в том числе зависит и от того, какие примеси могут входить в его кристаллическую решетку, основу берлинской лазури представляет гексацианоферрат(II) железа(III) – Fe4[Fe(CN)6]3 – в этом замечательном соединении содержатся атомы железа в двух различных степенях окисления – (+2) и (+3).
Гексацианоферратный фрагмент можно представить как октаэдр, в котором атом железа (+2) окружен шестью цианидными группами. Стоит отметить, что группа CN очень прочно связана с железом, не отрывается от него, и поэтому, в отличие от цианида калия, где связь межу калием и цианидом диссоциирует, высвобождая токсичный ион CN— без проблем, берлинская лазурь не токсична (правда, это не значит, что стоит попробовать лизнуть синий пигмент на картинах XVIII века, выставленных в Дрезденской или какой-либо другой галерее). Эти октаэдры некоторыми из своих вершин связаны с ионами железа(+3), в оставшихся пустотах могут находиться молекулы воды или ионы щелочных металлов. Таким образом, ионы железа(+3) также находятся в октаэдрическом окружении, хотя и не таком регулярном, как ионы железа (+2). Это обстоятельство, в свою очередь, приводит к различию электронной конфигурации ионов железа, определяющему цвет кристаллов: при облучении берлинской лазури светом она поглощает световые колебания, соответствующие оранжевому цвету, в результате такого явления, как межатомный перенос заряда – при возбуждении светом электрон с иона железа(+2) переносится на ион железа(+3).
Результаты исследований геохимиков позволяют предположить, что Дисбах был не первый, кто получил берлинскую лазурь – она могла образоваться в добиотических условиях (из ионов железа в насыщенной электричеством аммиачно-метановой атмосфере). Более того, некоторые исследователи связывают берлинскую лазурь с появлением жизни – эксперименты показывают, что некоторые биологически активные соединения могли образоваться из циановодорода, высвобождающегося из берлинской лазури при её выдерживании при pH=12 и относительно высоких температурах (70–150 °C) во влажной бескислородной атмосфере аммиака, воспроизводящей условия добиотической Земли.
Берлинская лазурь до сих пор может применяться в качестве синего пигмента, хотя со времени Дисбаха уже было разработано немалое количество синтетических красителей синего цвета, однако это не единственный вариант её использования. Например, берлинскую лазурь применяют для лечения людей, отравившихся ионами таллия или получивших в организм дозу ионов радиоактивного цезия. Пациент принимает капсулу с берлинской лазурью, и в его кишечнике наше замечательное соединение взаимодействует с опасными ионами, «засасывая» их в свою кристаллическую решетку. Эта адсорбция не позволяет организму реадсорбировать опасные ионы, и они с большей скоростью выводятся из организма – так в присутствии берлинской лазури время вывода цезия из организма понижается со 110 до 30 суток.
Итак, берлинская лазурь, обнаруженная случайно, совершенно замечательным образом когда-то перевернула отношение людей к синему цвету, сделав его доступным вплоть до дизайна военной формы. Ну а сейчас она не только не прекращает свою работу по окрашиванию, но и приобретает новые профессии.
1.14. Гексафторид урана
Обычно ядерные реакторы и ядерные бомбы у нас как-то ассоциируются с триумфом воли физиков, но для того, чтобы физики смогли бы, нет, не раскрутить шарик наоборот на пари, а «приручить» атом, они должны были иметь дело с обогащенным ураном, а для обогащения урана используется вещество, получение которого без химиков невозможно – гексафторид урана (UF6).
Разделение двух нуклидов, относящихся к одному химическому элементу, вообще является задачей не из легких – на качественном уровне химические свойства изотопов идентичны; физические способы разделения изотопной смеси усложняются по мере того, как уменьшается различие масс двух нуклидов, и ещё в большей степени усложняются, если один из нуклидов (в особенности тот, который нам нужен) содержится в количестве, меньшем, чем 1 % от общего состава изотопной смеси.
Что же такое «нуклид» и «изотопы»? Нуклид – вид атомов, характеризующийся определённым массовым числом, атомным номером и энергетическим состоянием ядер и имеющий время жизни, достаточное для наблюдения.
Например, водород представлен такими нуклидами, как протий (ядро состоит из одного протона), дейтерий или «тяжелый водород» (ядро состоит из одного протона и одного нейтрона) и тритий (ядро состоит из одного протона и двух нейтронов).
Нуклиды, имеющие одинаковый атомный номер (обладающие одинаковым числом протонов), называются «изотопами». Так вот, строго говоря, применение термина «изотоп» в единственном числе вместо термина нуклид неверно, однако широко распространено.