Читаем Жизнь замечательных веществ полностью

И в Европе, и особенно в США покупатели, привыкшие к ярким цветам синтетических пищевых красителей, без восторга относятся к тому, что привычные вкусности потускнели из-за перехода на природные пигменты. Немаловажно и то, что замена чаще всего приводит к подорожанию продукта, когда символическому, а когда и вполне ощутимому. Единственный прием, который способствует привлечению покупателей, – рекламные кампании, объясняющие, что хоть оранжевый цвет и стал тусклым, но теперь конфетам его дает натуральная морковка, а не какой-то там синтетический Е122. Однако следует отметить, что такой подход ещё больше увеличивает иррациональный страх перед всем химическим. Напомним, что вред для фигурировавших в докладе 2007 года веществ никак нельзя считать доказанным. В свою очередь, этот страх и дальше может подталкивать к изменению правил, регулирующих состав пищевых продуктов, и все это в конечном счете не приносит радости никому – ни производителям продуктов питания, ни потребителю.


2.3. Каротин


Продолжаем тему окрашенных соединений. Ассоциацией первого ряда к слову β-каротин всегда являются ярко-оранжевые корнеплоды. Но хотя морковь и дала название этому интенсивно окрашенному соединению (латинское название подвида культурной моркови – Daucus carota subsp. Sativus

), а также его близких по структуре каротинов и каротеноидов, морковь не является единственным местом, в котором локализован β-каротин.


Каротины широко распространены в природе – достаточно очевидно, что их можно найти в оранжевой мякоти манго и тыквы, но β-каротин также можно встретить в таких зелёных растениях, как шпинат и сельдерей, а также в зелёных листьях лиственных деревьях. Летом сочный цвет каротина перекрывается зелёным цветом поглощающего свет хлорофилла. Однако с приходом осени, когда хлорофилл разрушается, оранжевые и красные оттенки каротинов превращают леса в царство жёлтых, оранжевых и красных оттенков, которые уносит листопадом.

Одновременное присутствие в листьях растений каротина и хлорофилла не случайно. Каротин также представляет собой светопоглощающую молекулу, которая поглощает видимый свет в волновом диапазоне 440–520 нм (в синей и голубой области спектра; поглощение этих цветов означает, что сам каротин пропускает комплементарные синему и голубому жёлтые и красные цвета, чем и обусловлен его характерный цвет), таким образом способствуя процессу фотосинтеза. Способность β-каротина поглощать свет обусловлена особенностями его химического строения. Молекулу β-каротина можно представить следующим образом: длинная углеродная цепь, в которой чередуются двойные (9 штук) и одинарные (10 штук) связи углерод-углерод, с каждым концом цепи связан циклогексенильный заместитель (кольцо из шести атомов углерода с одной двойной связью).



Чередование двойных и одинарных связей (альтернирование кратных связей) приводит к эффекту сопряжения – электроны кратных связей делокализуются (распространяются) по всей системе сопряжения (то есть в случае β-каротина – по всей цепи из 11 двойных (в систему сопряжения входят также по одной двойной связи с каждого циклогексенильного фрагмента) и 10 одинарных связей. Примерно такая же система сопряжения, только замкнутая, существует в молекуле бензола, которую, уважаемые читатели, вы уж точно должны помнить со школьной скамьи (если уж говорить откровенно, то в сопряженной системе, замкнутой ли, как у бензола, открытой ли, как у β-каротина, нельзя говорить о двойных и одинарных связях в чистом виде – кратность, как число пар электронов, отвечающих за образование ковалентной связи, всех связей сопряженной системы меньше двух и при этом больше одного). Протяженная система сопряжения, делокализация электронов, в свою очередь, способствуют тому, что молекула способна поглощать свет в видимой области.



«Химическим потомком» β-каротина можно считать ретиналь и его восстановленную форму – витамин А (ну, или если хочется – можно считать ретиналь продуктом окисления витамина А ака ретинола); и ретинол и ретиналь также представляют собой молекулы, способные к светопоглощению. Ретиналь образуется в результате окислительного расщепления центральной двойной связи β-каротина, протекающего с участием фермента-диоксигеназы (окислителем в этом процессе является кислород или кислородсодержащие частицы, фермент же как биологический катализатор, отвечает лишь за ускорение процесса и как хороший катализатор – за его селективность, то есть избирательность).

Перейти на страницу:

Все книги серии Научпоп Рунета

Чердак. Только физика, только хардкор!
Чердак. Только физика, только хардкор!

Знаете ли вы, что такое время? А как придумали теорию струн? Какой химический элемент – самый большой в мире? А вот Дмитрий Побединский, физик, популярный видеоблогер и постоянный автор «Чердака», знает – и может рассказать!Существуют ли параллельные вселенные?Можно ли создать настоящий световой меч?Что почувствует искусственный интеллект при первом поцелуе?Как устроена черная дыра?На эти и другие вопросы, которые любого из нас способны поставить в тупик, отвечает Дмитрий – легко и доступно для каждого из нас.«Чердак: наука, технологии, будущее» – научно-образовательный проект крупнейшего российского информационного агентства ТАСС. Для 100 000 своих читателей команда «Чердака» каждый день пишет о науке – российской и не только, – а также рассказывает об интересных научно-популярных лекциях, выставках, книгах и кино, показывает опыты и отвечает на научные (и не очень) вопросы об окружающей действительности.В формате pdf A4 сохранен издательский дизайн.

Дмитрий Михайлович Побединский

Научная литература
Математика для гиков
Математика для гиков

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.

Рафаель Роузен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука
Модицина. Encyclopedia Pathologica
Модицина. Encyclopedia Pathologica

Эта книга – первый нескучный научпоп о современной медицине, о наших болячках, современных лекарствах и человеческом теле. Никита Жуков, молодой врач-невролог из Санкт-Петербурга, автор ультрапопулярного проекта «Encyclopatia» (от Encyclopedia pathologicae – патологическая энциклопедия), который посещают более 100 000 человек в день.«Модицина» – это критика традиционных заблуждений, противоречащих науке. Серьезные дядьки – для которых Никита, казалось бы, не авторитет – обсуждают его научно-сатирические статьи на медицинских форумах, критикуют, хвалят и спорят до потери пульса.«Минуту назад вы знали, что такое магифрения?» – encyclopatia.ru.«Эта книга – другая, не очень привычная для нас и совершенно непривычная для медицины форма, продолжающая традиции принципа Питера, закона Мерфи, закона Паркинсона в эпоху интернета», – Зорин Никита Александрович, M. D., психиатр, Ph.D., доцент, член президиума московского отделения Общества специалистов доказательной медицины (ОСДМ).В формате pdf A4 сохранен издательский дизайн.

Никита Жуков , Никита Эдуардович Жуков

Здоровье / Медицина / Энциклопедии / Прочая научная литература / Словари и Энциклопедии

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.

Скотт Бембенек

Научная литература
Кто бы мог подумать! Как мозг заставляет нас делать глупости
Кто бы мог подумать! Как мозг заставляет нас делать глупости

Книга молодого научного журналиста Аси Казанцевой — об «основных биологических ловушках, которые мешают нам жить счастливо и вести себя хорошо». Опираясь по большей части на авторитетные научные труды и лишь иногда — на личный опыт, автор увлекательно и доступно рассказывает, откуда берутся вредные привычки, почему в ноябре так трудно работать и какие вещества лежат в основе «химии любви».Выпускница биофака СПбГУ Ася Казанцева — ревностный популяризатор большой науки. Она была одним из создателей программы «Прогресс» на Пятом канале и участником проекта «Наука 2.0» на телеканале Россия; ее статьи и колонки публиковались в самых разных изданиях — от «Троицкого варианта» до Men's Health. «Как мозг заставляет нас делать глупости» — ее первая книга.

Анастасия Андреевна Казанцева , Ася Казанцева

Научная литература / Биология / Биохимия / Психология / Образование и наука