А, знаете — почему? Для электропроводности полупроводника всё равно — легировать его атомами с большей или меньшей валентностью. Результат-то один и тот же: гарантированное наличие свободных валентностей. А на каких атомах эти свободные валентности висят — на примесных или на основных — это неважно. Важно лишь общее количество свободных валентностей: чем их больше, тем лучше электронная проводимость. А про дырочную проводимость лучше поскорее забыть. Потому что нет её в природе. Да и не нужна она совсем. Не верите? Ну, возьмите вы образец кремния, легированного бором или индием — со стопудовой p
-проводимостью. Без дырок тут — никак, да? Ну, подайте постоянное напряжение на этот образец. Через него потечёт ток — не такой сильный, как через металл, но всё-таки. Теперь поменяйте полярность приложенного напряжения. Через образец снова потечёт такой же ток, только «в обратную». А теперь прикиньте: по металлическим проводам в вашей цепочке двигаются только электроны, правда ведь? И сила постоянного тока сквозь любое поперечное сечение замкнутой цепочки одна и та же, не так ли? Сколько входит электронов в ваш p-образец в единицу времени, столько же их и выходит. Значит, и в самом p-образце в данном случае проводимость электронная. Какой же ей ещё быть? Всё тот же режим — «ротации кадров» между свободными и связанными электронами! Надо всё-таки сказать, почему электропроводность полупроводников лучше, чем у диэлектриков (непробитых), но хуже, чем у металлов. Дело — именно в количестве свободных валентностей — большем, чем у диэлектриков, но меньшим, чем у металлов. Спрашивается: откуда берутся свободные валентности при правильной кристаллической решётке у беспримесного полупроводника? Напрашивается ответ: химические связи здесь не вполне стационарны — они, чисто программными средствами, по очереди рвутся в принудительном порядке! Из-за цикличности этого процесса, имеет смысл среднее время, в течение которого валентности и остаются свободными. Отсюда немедленно следует наличие полосы оптического поглощения у полупроводников! При облучении даже образца p
-типа светом, попадающим в его полосу поглощения, сопротивление образца для посторонних электронов резко уменьшается — так работают фоторезисторы. А всё потому, что возбуждённые свободные валентности шустрее управляются с «ротацией кадров» электронов, отчего для них увеличивается пропускная способность образца. И ещё один секрет — для полупроводников программно обеспечена возможность превращения энергии возбуждения атомов в энергию зарядовых разбалансов! Для одних элементов предписано, чтобы зарядовые разбалансы получались отрицательные, а других — чтобы положительные. Собственно, потому и существуют полупроводники n
-типа и p-типа. Мобильное электричество в виде зарядовых разбалансов, отрицательных и положительных, играет ключевую роль при работе полупроводниковых диодов, т.е. пар образцов p- и n-типа, контактирующих друг с другом весьма плотно, через химические связи — и образующих, таким образом, p-n-переход. Вот, например, для выпрямления переменного тока широко используется то свойство p
-n-перехода, что он хорошо пропускает ток при прямом напряжении, т.е. при подключении p-области к «плюсу», а n-области к «минусу», и плохо пропускает ток при обратном напряжении. Почему? Смотрите: при прямом включении, отрицательные зарядовые разбалансы в n-области мигрируют от «минуса», т.е. к p-n-переходу. С другой стороны, положительные заряды в p-области мигрируют от «плюса» — тоже к p-n-переходу. В итоге, в области p-n-перехода те и другие, практически, компенсируют друг друга. И напряжённость «поля» в материале диода определяется, практически, разностью потенциалов на его электродах. Если эту разность потенциалов поделить на сопротивление материала диода, то получится сила тока посторонних электронов через диод. При обратном же включении, картина совсем другая. Теперь отрицательные зарядовые разбалансы в n-области мигрируют к положительному электроду, а положительные заряды в p-области — к отрицательному электроду. Концентрируясь в приэлектродных областях, они ослабляют напряжённость «поля» в материале диода, создаваемую внешним источником напряжения. Сопротивление материала диода остаётся прежним, а напряжение — по сравнению со случаем прямого включения — становится меньше. Поэтому и ток через диод при этом меньше. До смешного просто.