Читаем Журнал «Компьютерра» №47-48 от 20 декабря 2005 года полностью

Итак, в чем же суть проблемы, о которой мы сегодня рассказываем? Рассмотрим кривую, заданную полиномиальным уравнением с двумя переменными. Одна из важнейших характеристик такой кривой – ее род (genus). Дать здесь классическое определение рода кривой будет трудно, но мы приблизимся к нему с другой стороны. Начнем с поверхностей. Наверное, каждый в детстве читал о топологах, которые не могут отличить кружку от бублика – ведь обе поверхности топологически эквивалентны тору. Так вот, у поверхностей тоже есть род; род бублика, например, равен единице. А вообще род поверхности (если быть точным, род «ориентируемой поверхности») – это количество замкнутых кривых, по которым ее можно разрезать так, чтобы она не распалась на отдельные части. Можете сами попробовать: сферу или плоскость так разрезать нельзя, у них род 0, тор (он же бублик[]) можно разрезать один раз, хоть вдоль, хоть поперек, но после этого останется либо цилиндр, либо кусок плоскости, и второго разреза уже не получится. Все ориентируемые поверхности похожи на сферу с ручками (термин из алгебраической геометрии): сколько у сферы ручек, столько и разрезов можно сделать.

Теперь представьте, что уравнение, которое нас интересует, нужно решать в комплексных числах. Тогда множество его решений – это двухмерная поверхность. Ее род в данном случае и называется родом кривой.

Итак, род представляет собой целое неотрицательное число; кривые рода 1 – это и есть эллиптические кривые, которые сейчас находят применение в криптографии. О них и идет речь в гипотезе Берча-Свиннертон-Дайера. Кстати, если ограничиться вещественными числами, эллиптические кривые определяются совсем просто: это кривые, заданные одним из уравнений Вейерштрасса y

Как уже упоминалось, гипотеза касается множества рациональных решений данного уравнения. Берч и Свиннертон-Дайер рассматривали функцию L, вычисляемую через количество рациональных решений по модулю простого числа p (в вещественном случае – количество решений уравнения y2 ? x3 + ax +b по модулю p). Функция эта строится аналогично дзета-функции Римана, о которой мы уже рассказывали, и свойства имеет соответствующие: L, если рассмотреть ее как функцию комплексного переменного, сходится на полуплоскости, но при этом аналитически продолжается и на другую половину. Вычислить значения L и ее аналитического продолжения для каждой конкретной кривой не очень просто, но вполне возможно; в частности, это можно сделать автоматически, на компьютере.

Гипотеза Берча-Свиннертон-Дайера утверждает, что количество и структура множества рациональных решений эллиптической кривой тесно связаны с поведением L-функции в единице[Если быть точным, то по этой гипотезе ранг группы рациональных решений есть степень первого ненулевого члена разложения L в ряд Тейлора в единице; иными словами, L(z) около единицы похожа на (z—1)r, где r – ранг.]. В частности, количество рациональных точек бесконечно тогда и только тогда, когда L(1)=0.

Благодаря работам отечественного математика Виктора Александровича Колывагина, а также доказательству теоремы Ферма Эндрю Уайлсом это утверждение уже доказано в одну сторону: если L(1) ? 0, то количество рациональных точек конечно. Доказательство в другую сторону – предмет долгих и безуспешных поисков. Кроме того, открыт путь для обобщений гипотезы – в частности, к изучению рациональных точек не только кривых, но и поверхностей более высокой размерности (то есть уравнений с бульшим количеством переменных). Например, Леонард Эйлер еще в 1769 году выдвинул гипотезу, что уравнение x4 + y4 + z4 = t4 не имеет ненулевых решений. Эту гипотезу, как и похожую на нее гипотезу Ферма, долгое время не могли доказать, но результат в данном случае оказался иным: в 1988 году обнаружился контрпример (точнее, бесконечно много контрпримеров). Вот минимальный из них (проверить легко – но представьте, как трудно было бы его найти без развитой теории): 2682440 4 + 15365639 4 + 18796760 4 = 20615673 4

Приложения

Алгебраическая геометрия – наука, приложения которой, как правило, отнюдь не очевидны. Математикам, чтобы годами биться над интересной задачей, приложения и вовсе не нужны: да, великая теорема Ферма имеет некоторый криптографический смысл, но попытки ее доказательства привели к созданию и развитию нескольких важных разделов современной математики задолго до того, как криптография оформилась как математическая дисциплина.

Вот и в случае гипотезы Берча-Свиннертон-Дайера непосредственных приложений, о которых можно было бы здесь рассказать, сразу не видно. Разумеется, в своей области гипотеза занимает центральное место: мы пока не умеем искать рациональные точки алгебраических многообразий (заданных полиномиальными уравнениями множеств), и доказательство гипотезы Берча-Свиннертон-Дайера могло бы доставить математикам новые методы и подходы к этому поиску.

Перейти на страницу:

Похожие книги

Принцип Касперского
Принцип Касперского

Почти 300 миллионов пользователей Интернета сегодня защищают свои компьютеры с помощью антивирусных продуктов и технологий «Лаборатории Касперского». 80 крупнейших мировых IТ-корпораций находятся под защитой бренда Kaspersky. Среди них – Microsoft, Intel, Safenet, Check Point, IBM/Lotus, Clearswift, D-Link, Juniper, LANDesk, Netasq, ZyXEL, Cisco, Aladdin, Novell, Linux и др. Таков итог более чем двадцатилетних усилий и целеустремленного труда команды единомышленников во главе с Евгением Касперским. В офисах его транснациональной корпорации со штаб-квартирой в Москве говорят на 18 языках мира. Представительства компании расположены в 29 странах.Самый известный в мире гражданин IT-России, профессиональный криптограф и шифровальщик, выпускник элитной разведшколы, путешественник, либерал, умелый лидер, ведущий мировой эксперт в области информационной безопасности и просто удачливый человек, Евгений Касперский всегда хотел быть лучшим в своем деле. Ему, команде и компании, носящей его имя, это удалось. Как? Об этом наша книга.Для широкого круга читателей.

Владислав Юрьевич Дорофеев , Татьяна Петровна Костылева

Карьера, кадры / Биографии и Мемуары / Прочая компьютерная литература / Финансы и бизнес / Книги по IT