А пока СССР разорвал дипломатические отношения с Израилем. Многие арабские страны отозвали послов даже из Вашингтона. Суэцкий канал на несколько лет был закрыт для судоходства, что привело к повышению мировых цен на нефть. Очень скоро в этом районе вновь начались стычки между Израилем и Египтом — позже историки «объединили» их в Войну на истощение. Отчаявшись вернуть Синай силой оружия, Каир заключил с Тель-Авивом мирный договор. Полуостров вернулся в египетские руки, неприкосновенность израильского государства с юго-запада отныне гарантировалась. Голанские же высоты и Западный берег Иордана до сих пор контролируются Израилем. Борьба между евреями и палестинскими арабами за пустыни Иудеи, холмы Самарии и святыни Иерусалима не затихает с тех судьбоносных дней июня 1967-го. Когда произойдет последний бой и погибнет последняя жертва этой нескончаемой Шестидневной войны — неизвестно.
Искусственные мышцы
В современной технике в основном используются два эффективных способа совершения механической работы: термодинамический и электромагнитный. Первый основан на использовании энергии сжатого газа, как в двигателях внутреннего сгорания, паровых турбинах и огнестрельном оружии. Во втором задействованы магнитные поля, создаваемые электрическими токами, — так работают электромоторы и электромагниты. Однако в живой природе для получения механического движения используется совершенно иной подход — управляемое изменение формы объектов. Именно так работают мышцы человека и других живых существ. При поступлении нервного импульса в них запускаются химические реакции, которые приводят к сокращению или, наоборот, к растяжению мышечных волокон.
Преимущества такого «природного» привода связаны с тем, что материал меняется как целое. Это значит, что в нем нет движущихся друг относительно друга, а следовательно, трущихся и изнашивающихся частей. Кроме того, сохраняется целостность организма (или, правильнее сказать, его геометрическая связность). Движение возникает на молекулярном, или, как модно теперь говорить, наноуровне за счет небольшого сближения или удаления друг от друга атомов вещества. Это практически избавляет мышцы от инерционности, которая так характерна для всех роботов с электродвигателями. Но, конечно, у мускульного привода есть и недостатки. Если говорить о живых мышцах — это постоянный расход химических компонентов, которыми необходимо снабжать каждую клетку мышечной ткани. Такие мышцы могут служить только в качестве части сложного живого организма. Другой недостаток связан с постепенным старением материала. В живом организме клетки периодически обновляются, а вот в монолитном техническом устройстве подобное обеспечить крайне сложно. В поисках искусственных мышц ученые стремятся сохранить преимущества, свойственные движителям на основе изменения формы, и в то же время избежать их недостатков.
Школьница Панна Фелсен соревнуется с искусственной рукой, изготовленной в Технологическом институте штата Виргиния
Память формы
Первые исследования в области искусственных мышц были напрямую связаны с эффектом памяти формы, который присущ некоторым сплавам. Он был открыт в 1932 году шведским физиком Арни Оландером (Arne Olander) на примере сплава золота с кадмием, но почти 30 лет не привлекал особого внимания. В 1961 году память формы совершенно случайно обнаружили у никель-титанового сплава, изделие из которого можно произвольно деформировать, но при нагреве оно восстанавливает свою первоначальную форму. Не прошло и двух лет, как в США появился коммерческий продукт — сплав, нитинол, получивший название по своему составу и месту разработки (NITINOL — NiTi Naval Ordnance Laboratories).