В 1874 году 16-летний выпускник гимназии Макс Планк стоял перед непростым выбором: посвятить жизнь музыке или физике. Между тем его отец хотел, чтобы Макс продолжил юридическую династию. Он устроил сыну встречу с профессором Филиппом фон Жолли, попросив того остудить интерес наследника к физике. Как писал Планк в своих мемуарах, Жолли «изобразил физику как высокоразвитую, едва ли не полностью исчерпавшую себя науку, которая близка к тому, чтобы принять окончательную форму...». Такого мнения в конце XIX века придерживались многие. Но Планк все же выбрал физику и оказался у истоков величайшей революции в этой науке.
В апреле 1900 года физик лорд Кельвин, в честь которого теперь названа шкала абсолютных температур, заявил на лекции, что красоту и чистоту здания теоретической физики омрачает лишь пара «темных облачков» на горизонте: неудачные попытки обнаружить мировой эфир и проблема с объяснением спектра излучения нагретых тел. Но не успел закончиться год, а с ним и XIX столетие, как Планк решил проблему теплового спектра, введя понятие кванта — минимальной порции лучистой энергии. Идея о том, что энергия может испускаться только фиксированными порциями, подобно пулям из автомата, а не воде из шланга, шла вразрез с представлениями классической физики и стала отправной точкой на пути к квантовой механике.
Работа Планка стала началом цепочки очень странных открытий, которые сильно изменили устоявшуюся физическую картину мира. Объекты микромира — молекулы, атомы и элементарные частицы — отказывались подчиняться математическим законам, отлично зарекомендовавшим себя в классической механике. Электроны не хотели обращаться вокруг ядер по произвольным орбитам, а удерживались только на определенных дискретных энергетических уровнях, неустойчивые радиоактивные атомы распадались в непредсказуемый момент без каких-либо конкретных причин, движущиеся микрообъекты проявлялись то как точечные частицы, то как волновые процессы, охватывающие значительную область пространства.
Привыкнув со времен научной революции XVII века к тому, что математика — это язык природы, физики устроили настоящий мозговой штурм и к середине 1920-х годов разработали математическую модель поведения микрочастиц. Теория, названная квантовой механикой, оказалась самой точной среди всех физических дисциплин: до сих пор не обнаружено ни единого отклонения от ее предсказаний (хотя некоторые из этих предсказаний получаются из математически бессмысленных выражений вроде разности двух бесконечных величин). Но вместе с тем точный смысл математических конструкций квантовой механики практически не поддается объяснению на обыденном языке.
Взять, к примеру, принцип неопределенности, одно из фундаментальных соотношений квантовой физики. Из него следует, что чем точнее измерена скорость элементарной частицы, тем меньше можно сказать о том, где она находится, и наоборот. Будь автомобили квантовыми объектами, водители не боялись бы фоторегистрации нарушений. Стоило измерить скорость машины радаром, как ее положение становилось бы неопределенным, и она наверняка не попадала бы в кадр. А если бы, наоборот, на снимке зафиксировалось ее изображение, то погрешность измерения на радаре не позволила бы определить скорость.
Достаточно безумная теория
Вместо привычных координат и скоростей квантовую частицу описывают так называемой волновой функцией. Она входит во все уравнения квантовой механики, но ее физический смысл так и не получил вразумительного истолкования. Дело в том, что ее значения выражены не обычными, а комплексными числами, и вдобавок недоступны для непосредственного измерения. Например, для движущейся частицы волновая функция определена в каждой точке бесконечного пространства и меняется во времени. Частица не находится ни в какой конкретной точке и не перемещается с места на место, как маленький шарик. Она словно бы размазана по пространству и в той или иной мере присутствует сразу везде, где-то концентрируясь, а где-то сходя на нет.