Взаимодействие таких «размазанных» частиц еще более усложняет картину, порождая так называемые запутанные состояния. Квантовые объекты при этом образуют единую систему с общей волновой функцией. С ростом числа частиц сложность запутанных состояний быстро растет, и понятия о положении или скорости отдельной частицы лишаются всякого смысла. Размышлять о таких странных объектах крайне трудно. Человеческое мышление тесно связано с языком и наглядными образами, которые сформированы опытом обращения с классическими предметами. Описание поведения квантовых частиц на непригодном для этого языке приводит к парадоксальным утверждениям. «Ваша теория безумна, — сказал как-то Нильс Бор после доклада Вольфганга Паули. — Вопрос лишь в том, достаточно ли она безумна, чтобы быть правильной». Но без корректного описания явлений на разговорном языке тяжело вести исследования. Физики часто осмысляют математические конструкции, уподобляя их простейшим предметам из обыденной жизни. Если в классической механике 2000 лет искали математические средства, подходящие для выражения повседневного опыта, то в квантовой теории сложилась прямо противоположная ситуация: физики остро нуждались в адекватном словесном объяснении отлично работающего математического аппарата. Для квантовой механики требовалась интерпретация, то есть удобное и в целом корректное объяснение смысла ее основных понятий.
Предстояло ответить на целый ряд принципиальных вопросов. Каково реальное устройство квантовых объектов? Фундаментальна ли неопределенность их поведения, или она лишь отражает недостаточность наших знаний? Что происходит с волновой функцией, когда прибор регистрирует частицу в определенном месте? И наконец, какова роль наблюдателя в процессе квантового измерения?
Играющий в кости бог
Представление о непредсказуемости поведения микрочастиц шло вразрез со всем опытом и эстетическими пристрастиями физиков. Идеалом считался детерминизм — сведение любого явления к однозначным законам механического движения. Многие ожидали, что в глубине микромира найдется более фундаментальный уровень реальности, а квантовую механику сравнивали со статистическим подходом к описанию газа, который применяется лишь из-за того, что трудно отследить движения всех молекул, а не потому, что те сами «не знают», где находятся. Эту «гипотезу скрытых параметров» активнее всех защищал Альберт Эйнштейн. Его позиция вошла в историю под броским слоганом: «Бог не играет в кости».
Его оппонент Нильс Бор утверждал, что волновая функция содержит исчерпывающую информацию о состоянии квантовых объектов. Уравнения позволяют однозначно рассчитать ее изменения во времени, и в математическом плане она не хуже привычных физикам материальных точек и твердых тел. Отличие лишь в том, что она описывает не сами частицы, а вероятность их обнаружения в той или иной точке пространства. Можно сказать, что это не сама частица, а ее возможность. Но где именно она обнаружится при наблюдении, предсказать принципиально невозможно. «Внутри» частиц нет никаких недоступных измерению скрытых параметров, определяющих, когда именно им распадаться или в какой точке пространства появляться при наблюдении. В этом смысле неопределенность — фундаментальное свойство квантовых объектов. На стороне этой интерпретации, которую стали называть копенгагенской (по городу, где жил и работал Бор), была сила «бритвы Оккама»: в ней не предполагалось никаких дополнительных сущностей, которых не было в квантово-механических уравнениях и наблюдениях. Это важное преимущество склонило большинство физиков к принятию позиции Бора намного раньше, чем эксперимент убедительно показал, что Эйнштейн ошибался.
И все же копенгагенская интерпретация небезупречна. Главным направлением ее критики стало описание процесса квантового измерения. Когда частица с размытой по большому объему пространства волновой функцией регистрируется экспериментатором в определенном месте, вероятность ее пребывания в стороне от этой точки становится нулевой. А значит, волновая функция должна мгновенно сконцентрироваться в очень небольшой области. Эту «катастрофу» называют коллапсом волновой функции. И она является катастрофой не только для наблюдаемой частицы, но и для копенгагенской интерпретации, поскольку коллапс протекает вопреки уравнениям самой квантовой механики. Физики говорят об этом как о нарушении линейности при квантовом измерении.