Читаем Журнал «Вокруг Света» №01 за 2010 год полностью

Когда речь заходит о беспроводной передаче энергии, необходимо сделать важную оговорку. С точки зрения физики выпущенный из орудия линкора снаряд, который топит другой корабль, тоже переносит на расстояние энергию — кинетическую и химическую. И, заметьте, совсем без проводов! Так что, когда мы говорим о проблеме беспроводной передачи энергии, мы имеем в виду только передачу электроэнергии.

Причем передача эта должна осуществляться достаточно эффективно, чтобы энергию имело смысл использовать в повседневных целях. Человечество уже сотню лет успешно передает электроэнергию на расстояние при помощи радиоволн. Передатчик их излучает, приемник снова переводит в электричество, и мы слушаем, к примеру, джаз. Другое дело, что КПД этой передачи ничтожно мал. Принятой по радио энергии не хватает даже для работы наушников, из-за чего нам приходится регулярно менять батарейки в приемниках. Энергия радиоволн способна донести информацию с границ Солнечной системы, от летящего там зонда «Вояджер», но ей не под силу зажечь даже обыкновенную лампочку.

И наконец, в разговоре о беспроводной передаче энергии выделяются две существенно различные задачи: в одном случае цель в том, чтобы избавиться от надоевших проводов, которые путаются под ногами, а в другом — передать энергию туда, куда тянуть кабель крайне накладно, а то и просто невозможно. 

Прожектор передает энергию для пропеллера радиоуправляемой модели самолета (NASA, 2002 год). Но из нескольких киловатт мощности прожектора солнечная батарея принимает и пускает в дело лишь десятки ватт.Год спустя вместо прожектора уже использовался лазер, благодаря чему удалось повысить КПД и сократить размер солнечной батареи. Фото: TOM TSCHIDA/DERC/NASA (х2)

Космические электростанции

Вопрос энергетической безопасности человечества стоит довольно остро. Запасы угля, нефти и даже урана с торием сокращаются. Перспективы термоядерной энергетики пока туманны. Между тем есть прекрасный и совершенно бесплатный термоядерный реактор, рассеивающий энергию направо и налево, — Солнце, и гелиоэнергетика развивается очень бурно. Однако на Земле, где бы ни построить солнечную электростанцию, есть как минимум одна проблема — ночь, а еще облака, пыль и прочие неудобства.

Напрашивается логичный вывод — следует перенести электростанции в космос, где Солнце светит круглые сутки. Например, «подвесить» их на геостационарную орбиту. Первым идею солнечной космической электростанции (СКЭС), поставляющей энергию на Землю, высказал в 1968 году американский ученый чешского происхождения Питер Глейзер, создатель лунного отражателя-дальномера, оставленного на нашем естественном спутнике экспедицией «Аполлон-11». Опубликовав идею в журнале Sciencе, он, как истинный американец, запатентовал свою концепцию. В те годы казалось, что воплощение этой идеи — дело ближайшего будущего. Но срок действия патента давно истек, а престарелый Глейзер только сейчас стал получать обнадеживающие сообщения о возможной реализации своей идеи.

В начале 2009 года американская корпорация Solaren подписала с калифорнийской энергетической компанией контракт о поставке 200 мегаватт электроэнергии космического производства с начала 2016 года. То есть всего через шесть лет фирма, где сейчас работают лишь около десятка человек, обещает не только построить электростанцию на геостационарной орбите, но и обеспечивать энергетические потребности четверти миллиона человек (200 МВт — это примерно пятая часть мощности Нижнекамской ГЭС, которая входит в десятку крупнейших ГЭС в России)! В том же 2009 году шестнадцать японских компаний, включая такого гиганта, как Mitsubishi, подписали соглашение о создании к 2030 году своей космической электростанции мощностью 1 ГВт.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже