Читаем Журнал «Вокруг Света» №10 за 2008 год полностью

Причина столь быстрого прогресса токамаков заключается в явлении самоорганизации плазмы, открытом Борисом Кадомцевым в 1987 году. В экспериментах на токамаке Т-10 в Институт атомной энергии им. И.В. Курчатова, а затем и на других токамаках было обнаружено, что плазма стремится принять такую форму, при которой удержание получается наилучшим. Если ей не мешать, эта форма устанавливается сама собой. Попытки экспериментаторов навязать плазме другую форму только ухудшают ее поведение. Еще лучшие результаты получаются при возникновении в плазме транспортных барьеров — узких зон с резко пониженной теплопроводностью. Это приводит к росту времени удержания примерно вдвое. Впервые такой режим улучшенного удержания открыли на немецком токамаке ASDEX в 1982 году. И опять он получился «сам собой» за счет самоорганизации плазмы и сразу исчез — плазма вернулась к обычному режиму. Понадобилось около 15 лет, чтобы разобраться со сложным взаимодействием электрических и магнитных полей, вращения и дрейфа частиц плазмы, которые приводят к образованию транспортных барьеров. Теперь мы знаем, что надо сделать, чтобы получить режим улучшенного удержания, и как его поддерживать. Это открытие заставило отложить начало строительства реактора ИТЭР, чтобы сделать его более дешевым и эффективным за счет работы в режиме улучшенного удержания. С 1998 по 2002 год новый проект был разработан во всех деталях. По новому проекту ИТЭР стал меньше — большой радиус тора удалось сократить с 8,2 до 6,3 метра.

А что же стеллараторы?

После закрытия американской стеллараторной программы исследования на них продолжались в СССР, Англии, Германии, Франции, а потом и в Японии. Были найдены причины неудачи американских экспериментов. Главная из них — недооценка точности, с которой должны изготавливаться обмотки магнитов. Она лежит на пределе возможностей современного машиностроения. К тому же детали магнитной системы стелларатора имеют крайне сложную форму и сделаны из очень неудобных материалов — меди или сверхпроводящих сплавов. Ошибки масштаба 1:10 000 в размерах или форме магнитных обмоток приводят к заметным нарушениям структуры магнитного поля. Ловушка становится «дырявой» и время удержания плазмы резко падает. Поэтому построить стелларатор намного сложнее, чем такого же размера токамак.

В то же время стелларатор в качестве основы будущего термоядерного реактора имеет важные преимущества. Магнитное поле в нем можно не выключать годами. То есть в принципе он может работать в постоянном режиме, что и требуется для термоядерного реактора. В токамаке же для поддержания тока в плазме требуется импульсное магнитное поле, так что время существования плазмы в нем ограничено. Удастся ли добиться стационарного режима в реакторе-токамаке, пока никто не знает.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже