[6] = {…, –12, –6, 0, 6, 12, 18, 24,…};
[2] = {…, –4, –2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,…};
[3] = {…, –6, –3, 0, 3, 6, 9, 12, 15, 18, 21, 24,…}.
Фигурные скобки здесь обозначают множества, и мы разрешаем отрицательные кратные числа. Обратите внимание:
С другой стороны, некоторые числа, содержащиеся в [3], не входят в [2] и наоборот. Следовательно, 2 не делится на 3, а 3 не делится на 2.
В общем, если немного повозиться с этим, всю теорию простых чисел и делимости можно переформулировать в терминах множеств чисел, кратных данному. Эти множества и есть примеры идеалов, которые определяются двумя основными свойствами: сумма и разность чисел в идеале тоже входит в этот идеал, и произведение любого числа в идеале на любое число кольца тоже входит в идеал.
Нётер переформулировала Гильбертовы теоремы об инвариантах в терминах идеалов, а затем обобщила его результаты в совершенно новом направлении. Теорема Гильберта о конечном базисе для инвариантов сводится к доказательству того, что соответствующий идеал является конечно порожденным, то есть он состоит из всех сочетаний конечного числа многочленов (базиса). Нётер заново интерпретировала этот аргумент как утверждение о том, что любая цепочка возрастающих идеалов должна прекратиться после конечного числа шагов. То есть
Сегодня каждый студент-математик осваивает абстрактный аксиоматический подход к алгебре в процессе обучения. Важнейшим здесь является понятие группы, лишенное уже каких бы то ни было ассоциаций с перестановками или решениями алгебраических уравнений. В самом деле, абстрактная группа вовсе не обязана даже состоять из преобразований. Она определяется как произвольная система элементов, которые можно перемножать, получая при этом другой элемент этой же системы, в соответствии с коротким списком простых условий: это ассоциативный закон, существование в группе «единичного элемента», при умножении которого на любой другой элемент получается тот же элемент, и существование для каждого элемента системы «обратного» элемента, который при перемножении с данным дает единичный элемент. То есть существует элемент, который ничего не делает, каждому элементу соответствует другой элемент, который обращает вспять все, что делает первый, и если вы перемножаете три элемента подряд, то не имеет значения, какую пару вы перемножаете первой.
Чуть более сложные структуры вводят в действие полный спектр арифметических операций. Я уже упоминал кольцо. Существует также поле, в котором помимо всего прочего возможно деление. Строгое развитие такого абстрактного взгляда представляет сложности, и к нему приложили руку многие видные математики. Часто неясно, кто и что сделал первым. К тому моменту, когда разобрались со строгими определениями, большинство математиков уже довольно четко понимали, что происходит. Но, если разобраться, всем этим подходом мы обязаны Нётер, которая всегда подчеркивала необходимость аксиоматического подхода ко всем математическим структурам.
В 1924 г. в ее круг вошел голландский математик Бартель Ван дер Варден, который стал главным распространителем ее подхода, кратко изложенного в его книге «Современная алгебра» 1931 г. К 1932 г., когда Нётер выступила на пленарном заседании Международного конгресса математиков, ее алгебраические достижения были признаны во всем мире. Она была спокойна, скромна и великодушна. Позже в некрологе Ван дер Варден так подвел итог ее деятельности: