Двумя годами ранее университетский сенат объявил, что совместное обучение мужчин и женщин «разрушило бы академический порядок», и среди 986 студентов университета присутствовало всего две девушки. Эмми разрешили посещать занятия, но не принимать в них полноценного участия, к тому же она должна была получать у каждого профессора индивидуальное разрешение на посещение его лекций. Однако в 1904 г. порядок изменился, и женщины получили право учиться в университете на равных с мужчинами. Нётер в том же 1904 г., перебравшись в родные пенаты Гаусса – Гёттингенский университет, начала готовить докторскую диссертацию по теории инвариантов под руководством знаменитого Гордана. Вычисления, приведенные в ее диссертации, были необычайно сложными и увенчивались списком из 331 «коварианта» для форм четвертой степени с тремя переменными. Сам Гордан, обычно неутомимый, за 40 лет до этого спасовал перед таким громадным объемом вычислений. Методы Нётер были довольно традиционными, она почти или даже совсем не использовала предложенных Гильбертом новшеств. В 1907 г. Нётер получила степень доктора философии
Будь Нётер мужчиной, она естественным образом перешла бы в этот момент на следующую ступень академической карьеры – получила постоянный академический пост. Но путь хабилитации женщинам был закрыт, и Нётер пришлось на протяжении семи лет работать в Эрлангене бесплатно. При этом она помогала отцу, ставшему к тому времени инвалидом, и продолжала собственные исследования. Значительное влияние, привлекшее внимание Нётер к более абстрактным методам, оказала серия дискуссий с Эрнстом Фишером, который обсуждал с ней новые методы Гильберта и посоветовал пользоваться ими. Нётер последовала совету – с впечатляющим успехом, – и последствия этого заметны во всей ее дальнейшей карьере.
Математика в то время все же начинала открываться для женщин, и Нётер приняли в несколько крупных математических обществ, что стало поводом для визита в Вену – и воспоминаний внука Мертенса. В Эрлангене она руководила двумя аспирантами, хотя формально руководителем их подготовки значился ее отец. Затем Гильберт и Клейн пригласили ее в Гёттинген, давно ставший признанным мировым центром математических исследований. Шел 1915 г., и Гильберт, впечатленный теорией относительности Эйнштейна, все больше внимания уделял математической физике. Теория относительности зиждется на математических инвариантах, хотя и в более аналитическом контексте, чем те алгебраические инварианты, которые прежде изучали Гордан, Гильберт и Нётер. Речь идет о дифференциальных инвариантах, включающих в себя и те, что успели к тому моменту стать фундаментальными физическими понятиями, такие как кривизна пространства.
Гильберту нужен был специалист по инвариантам, и Нётер идеально подходила под его требования. За короткое время она решила две ключевые задачи. Во-первых, нашла метод нахождения всех дифференциальных ковариант для векторных и тензорных полей на Римановом многообразии – по существу, выяснила, какие еще величины ведут себя как Риманов тензор кривизны. Выяснить это было необходимо, поскольку Эйнштейнов подход к физике основывался на принципе «относительности», по которому законы, выраженные в любой системе отсчета, движущейся с постоянной скоростью, должны быть одинаковы для любого наблюдателя. Следовательно, законы эти должны быть инвариантны относительно группы преобразований, определяемых движущимися системами отсчета. Естественной группой симметрии для специальной теории относительности является группа Лоренца, определяемая преобразованиями, в которых пространство и время смешиваются, зато скорость света остается постоянной, придавая теории относительности ее неповторимый аромат. Нётер доказала, что каждое «инфинитезимальное преобразование» из группы Лоренца порождает соответствующую теорему о сохранении.