Как всегда, у Гильберта были на то свои резоны, и опять же ключевой вопрос можно было сформулировать так: «Да, конечно, но о чем это
Простой пример – утверждение «прямая, проходящая через точку, которая лежит внутри окружности, обязательно с этой окружностью пересекается». На чертеже это выглядит очевидно, но такое утверждение не является логическим следствием Евклидовых аксиом. Гильберт понял, что аксиомы Евклида неполны, и решил исправить оплошность. Евклид определял точку как «то, что не имеет частей», а прямую – как линию, которая «лежит равномерно по отношению к точкам на ней». Гильберт считал эти утверждения лишенными смысла. Главное, заявлял он, – это как ведут себя эти понятия, а не какой-то мысленный образ того, что они собой представляют. «Следует добиться того, чтобы с равным успехом можно было говорить вместо точек, прямых и плоскостей о столах, стульях и пивных кружках», – говорил Гильберт коллегам. В частности, рисунки были вне игры.
Разумеется, этот проект Гильберта был тесно связан с более глубоким вопросом, который к тому моменту уже был понятен ученым, – вопросу неевклидовых геометрий и аксиомы о параллельных (глава 11). Гильберт пытался установить базовые принципы аксиоматического рассмотрения математических тем. Среди этих тем были непротиворечивость (отсутствие логических противоречий) и независимость (чтобы никакая аксиома не была следствием из других аксиом). Также весьма желательны были полнота (не упустить ничего важного) и простота (по возможности). Евклидова геометрия была пробным камнем. С непротиворечивостью все было просто: Евклидову геометрию можно
Результатом этой работы стала лаконичная и элегантная книга «Основания геометрии», опубликованная в 1899 г. В ней Евклидова геометрия выводилась из 21 явно сформулированной аксиомы. Три года спустя Элиаким Мур и Роберт Мур (не родственники) доказали, что одну из этих аксиом можно вывести из остальных, так что на самом деле достаточно 20 аксиом. Гильберт начал с шести простейших понятий: это объекты «точка», «прямая», «плоскость» и отношения «между», «лежит на» и «конгруэнтный». Восемь аксиом разбирают отношения инцидентности между точками и прямыми, такие как «любые две различные точки лежат на одной прямой». Четыре аксиомы (которые Евклид, пользуясь чертежами, принял по умолчанию, без явной формулировки) говорят о порядке точек на прямой. Еще шесть разбирают вопросы конгруэнтности (отрезков прямых и треугольников; слово «конгруэнтный» по существу означает «такой же по форме и размеру»). Далее идет Евклидова аксиома о параллельных, в необходимости включения которой уже не сомневался ни один компетентный математик. Наконец, были еще две тонкие аксиомы о непрерывности, согласно которым точки на прямой соответствуют действительным числам (а не, скажем, рациональным, ведь тогда прямые, очевидно пересекающиеся на чертеже, могут позабыть сделать это в рациональной точке).