Гильберт происходил из семьи юристов. Его дед был судьей и тайным советником, его отец Отто – судьей графства. Его мать Мария (урожденная Эрдтманн) была дочерью кёнигсбергского торговца. Она питала страстный интерес к философии, астрономии и простым числам, и похоже, что ее энтузиазм передался и сыну. Когда Давиду было шесть лет, у него появилась сестра Эльзи. В школу Давид пошел в восемь лет, а до этого мать учила его дома. Школа обучала по классической программе, в ней почти не учили математике и совсем не учили физике и другим естественным наукам. Зубрежка была в порядке вещей, и везде, где требовалось заучивать наизусть неструктурированные списки фактов, Гильберт показывал слабые результаты. Сам о себе он пишет, что был «туп и глуп». Лишь один предмет выступал из общего ряда. В школьном отчете сказано: «К математике он всегда выказывал очень живой интерес и проницательный ум: он замечательным образом овладел всем преподаваемым в школе материалом и умел применять его с уверенностью и изобретательностью».
В 1880 г. Гильберт начал обучение в Университете Кёнигсберга со специализацией в математике. Он проходил курсы также в Гейдельберге у Лазаря Фукса; вернувшись в Кёнигсберг, учился у Генриха Вебера, Фердинанда фон Линдемана и Адольфа Гурвица. Гильберт близко подружился с Гурвицем и с одним из товарищей-студентов Германом Минковским. С Минковским он переписывался до конца жизни. Научным руководителем Гильберта стал Линдеман, который вскоре прославился доказательством того, что число π не удовлетворяет никакому алгебраическому уравнению с целыми коэффициентами. Он предложил Гильберту поработать над теорией инвариантов, то есть двинуться по дороге, которую проложил Буль и расширили Кэли, Силвестр и Пауль Гордан. Все они использовали вычислительные методы, и ловкость Гильберта в этих ужасных расчетах производила сильное впечатление на его друга Минковского, который писал: «Я наслаждался всеми теми процессами, через которые приходилось проходить несчастным инвариантам». В 1885 г. Гильберт получил свою докторскую степень, прочитав публичную лекцию по физике и философии.
В то время ведущим авторитетом в теории инвариантов был Гордан, а главный нерешенный вопрос состоял в том, чтобы доказать, для любого числа переменных и любой степени уравнения, существование конечного базиса. То есть конечного числа инвариантов, таких, что все остальные инварианты представляют собой их линейную комбинацию. Запишите базис – и по существу вы получите все возможные инварианты. Для квадратного уравнения с двумя переменными базис состоит из одного-единственного инварианта, и это дискриминант. Конечность базиса была доказана во многих случаях, и всегда при этом вычислялись все инварианты, а затем из них извлекался базис. Этим методом Гордан в свое время доказал наиболее общую известную теорему такого рода.
Все изменилось – вся теория инвариантов буквально встала с ног на голову – в 1888 г., когда Гильберт опубликовал короткую статью, в которой доказывал, что конечный базис всегда существует,
Несколькими годами позже Гильберт расширил свои результаты и представил в журнал новую статью. Клейн принял ее, охарактеризовав как «важнейшую работу по общей алгебре, которую