Читаем Значимые фигуры. Жизнь и открытия великих математиков полностью

Если исходить из этого описания, то для того, чтобы нарисовать фазовый портрет, нам нужно знать решения – или, по крайней мере, их численные приближения. Пуанкаре открыл, что некоторые свойства решений можно определить топологически. К примеру, если у системы есть периодическое решение – такое решение, которое снова и снова повторяет одну и ту же последовательную цепочку состояний, – то траектория представляет собой замкнутую петлю и решение просто ходит по ней кругами, как белка в колесе. Топологически любую петлю можно превратить в окружность, так что задача упрощается и сводится к топологическим свойствам окружностей. Присутствие петли иногда можно распознать, рассмотрев сечение Пуанкаре. Это поверхность, рассекающая поперек пучок траекторий. Взяв любую точку этого сечения, мы следуем по ее траектории до того момента, когда (если это произойдет) она вновь дойдет до этого сечения. Таким образом мы получим отображение поверхности на саму себя – отображение Пуанкаре, или отображение «первого возврата». Если сечение рассекает периодическую траекторию, то она, обойдя круг, возвращается в ту же точку, а соответствующая точка на отображении Пуанкаре остается на месте.

Предположим, в частности, что сечение представляет собой диск, шар или аналогичную фигуру с бо́льшим числом измерений и что мы можем показать, что образ сечения, полученный в результате преобразования Пуанкаре, укладывается внутрь того же сечения. Тогда мы можем воспользоваться топологической теоремой, известной как теорема Брауэра о неподвижной точке, и заключить, что какая-то неподвижная точка в этой системе должна существовать; это будет означать, что дифференциальное уравнение имеет периодическое решение, проходящее через данное сечение. Пуанкаре предложил целый ряд подобных методик и сформулировал общую гипотезу о долговременном поведении траекторий (решений) для дифференциальных уравнений с двумя переменными. А именно: траектория может сойтись к точке, к замкнутой петле или к гетероклинному циклу – петле, образованной траекториями, которые соединяют между собой конечное число неподвижных точек. Эту гипотезу доказал в 1901 г. Ивар Бендиксон, и результат теперь известен как теорема Пуанкаре – Бендиксона.

* * *

Вывод Пуанкаре о том, что топологические методы позволяют сделать глубокие выводы о решениях дифференциальных уравнений даже в тех случаях, когда формул для этих решений не существует, составляет основу сегодняшнего подхода к нелинейной динамике, которая находит применение едва ли не во всех областях естественных наук. Этот вывод привел Пуанкаре к еще одному эпическому открытию: он открыл хаос, ставший одним из крупнейших триумфов топологической динамики. Контекстом для этого открытия было движение нескольких тел под действием Ньютоновой гравитации – иначе говоря, задача многих тел.

Иоганн Кеплер из наблюдений Марса заключил, что орбита одиночной планеты, обращающейся вокруг Солнца, представляет собой эллипс. Ньютон объяснил этот геометрический факт в рамках своего Закона всемирного тяготения: любые два тела во Вселенной притягивают друг друга с силой, пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними. В принципе, Ньютонов закон предсказывает движение любого числа взаимно притягивающихся тел, таких как планеты Солнечной системы. К несчастью, Закон всемирного тяготения не предсказывает движение тел непосредственно: он позволяет записать дифференциальное уравнение, решение которого дает положение тел в любой момент времени. Ньютон обнаружил, что для двух тел это уравнение решаемо, и результатом решения является Кеплеров эллипс. Но для трех и более тел никаких аккуратных решений подобного рода не просматривалось, и математикам, работавшим в области небесной механики, приходилось прибегать к особым приемам и приближениям.

В 1889 г. исполнилось 60 лет Оскару II, королю Швеции и Норвегии, которые в то время составляли единое государство. В честь юбилея король объявил приз за решение задачи многих тел; тему королю предложил Миттаг-Леффлер. Ответ следовало дать не в виде простой формулы, которой почти наверняка не существовало, но в виде сходящегося бесконечного ряда. Тогда, чтобы решить задачу со сколь угодно высокой точностью, достаточно было бы всего лишь вычислить нужное число членов ряда.

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
10 гениев спорта
10 гениев спорта

Люди, о жизни которых рассказывается в этой книге, не просто добились больших успехов в спорте, они меняли этот мир, оказывали влияние на мировоззрение целых поколений, сравнимое с влиянием самых известных писателей или политиков. Может быть, кто-то из читателей помоложе, прочитав эту книгу, всерьез займется спортом и со временем станет новым Пеле, новой Ириной Родниной, Сергеем Бубкой или Михаэлем Шумахером. А может быть, подумает и решит, что большой спорт – это не для него. И вряд ли за это можно осуждать. Потому что спорт высшего уровня – это тяжелейший труд, изнурительные, доводящие до изнеможения тренировки, травмы, опасность для здоровья, а иногда даже и для жизни. Честь и слава тем, кто сумел пройти этот путь до конца, выстоял в борьбе с соперниками и собственными неудачами, сумел подчинить себе непокорную и зачастую жестокую судьбу! Герои этой книги добились своей цели и поэтому могут с полным правом называться гениями спорта…

Андрей Юрьевич Хорошевский

Биографии и Мемуары / Документальное
Клуб банкиров
Клуб банкиров

Дэвид Рокфеллер — один из крупнейших политических и финансовых деятелей XX века, известный американский банкир, глава дома Рокфеллеров. Внук нефтяного магната и первого в истории миллиардера Джона Д. Рокфеллера, основателя Стандарт Ойл.Рокфеллер известен как один из первых и наиболее влиятельных идеологов глобализации и неоконсерватизма, основатель знаменитого Бильдербергского клуба. На одном из заседаний Бильдербергского клуба он сказал: «В наше время мир готов шагать в сторону мирового правительства. Наднациональный суверенитет интеллектуальной элиты и мировых банкиров, несомненно, предпочтительнее национального самоопределения, практиковавшегося в былые столетия».В своей книге Д. Рокфеллер рассказывает, как создавался этот «суверенитет интеллектуальной элиты и мировых банкиров», как распространялось влияние финансовой олигархии в мире: в Европе, в Азии, в Африке и Латинской Америке. Особое внимание уделяется проникновению мировых банков в Россию, которое началось еще в брежневскую эпоху; приводятся тексты секретных переговоров Д. Рокфеллера с Брежневым, Косыгиным и другими советскими лидерами.

Дэвид Рокфеллер

Биографии и Мемуары / История / Образование и наука / Документальное