В одной из ранних работ Пуанкаре принял допущение о том, что это же утверждение верно и для трех измерений. Это показалось ему настолько очевидным, что он даже не потрудился это доказать. Но затем он открыл пространство, обладающее той же гомологией, что и 3-сфера, но топологически от нее отличное. Чтобы получить такое пространство, склейте попарно противоположные грани сплошного додекаэдра, – примерно так получается плоский трехмерный тор из сплошного куба. Чтобы доказать, что это «додекаэдрическое пространство» топологически не эквивалентно трехмерной сфере, Пуанкаре и придумал гомотопию – то, что происходит с петлей при деформировании. В отличие от 3-сферы, его додекаэдрическое пространство содержит петли, которые невозможно непрерывными деформированиями свести в точку. Затем он задался вопросом: не является ли это дополнительное свойство характеристикой 3-сферы? На самом деле это был вопрос, даже не гипотеза, поскольку Пуанкаре не высказал по ее поводу собственного мнения. Однако ясно: он полагал, что ответ должен быть «да», так что, называя этот вопрос гипотезой, мы не проявляем особой несправедливости по отношению к автору.
Гипотеза Пуанкаре оказалась твердым орешком. Очень твердым. Если вы тополог и привычны к соответствующей терминологии и мышлению, вопрос покажется вам простым. Он должен иметь естественный ответ и простое доказательство. Однако, судя по всему, это не так. Но идеи, которые натолкнули на него Пуанкаре, вызвали взрывной рост исследований топологических пространств и их свойств, таких как гомология и гомотопия, которые, если вам повезет, вы сможете различить. Гипотеза Пуанкаре была в конечном итоге доказана в 2002 г.; Григорий Перельман сделал это при помощи новых методов, на которые его отчасти вдохновила общая теория относительности.
Для Пуанкаре топология была не просто интеллектуальной игрой. Он применял ее в физике. Традиционный метод анализа динамической системы состоит в том, чтобы записать ее дифференциальное уравнение, а затем решить его. К несчастью, этот метод редко дает точный ответ, так что математики столетиями использовали приближенные методы. До тех пор пока не появились доступные и эффективные компьютеры, аппроксимации принимали вид бесконечного ряда, из которых использовались только первые несколько членов; компьютеры сделали численные методы аппроксимации вполне практичными и применимыми. В 1881 г. Пуанкаре разработал совершенно новый способ подхода к дифференциальным уравнениям и изложил его в «Записке о кривых, определенных дифференциальным уравнением». Этой статьей он заложил фундамент качественной теории дифференциальных уравнений, которая пытается вывести свойства решений дифференциального уравнения, не записывая для этого ни формул, ни рядов и не вычисляя их численно. Вместо этого теория использует общие топологические свойства фазового портрета – множества всех решений, рассматриваемого как единый геометрический объект.
Решение дифференциального уравнения описывает то, как его переменные меняются с течением времени. Решение можно визуализировать, если построить график, использовав эти переменные как координаты. С течением времени координаты меняются, так что определяемая ими точка движется вдоль кривой – траектории решения. Возможные сочетания переменных определяют многомерное пространство – по одному измерению на каждую переменную, – которое называют фазовым пространством, или пространством состояния. Если решения существуют при любых начальных условиях, как обычно и бывает, каждая точка в фазовом пространстве ложится на ту или иную траекторию. Таким образом, фазовое пространство разбивается на семейство кривых – фазовый портрет. Кривые эти ложатся рядом друг с другом как гладко расчесанные длинные волосы, за исключением окрестностей установившегося состояния уравнения, где решение остается все время постоянным, и волоски сжимаются в точку. Установившиеся состояния найти нетрудно; они обеспечивают фазовому портрету начало «скелета»: диаграмму его основных отличительных признаков.