После получения докторской степени Пуанкаре получил место младшего преподавателя математики в Университете Кана, где встретил свою будущую жену Луизу Пулен д’Андеси. Они поженились в 1881 г. и родили четверых детей – трех девочек и мальчика. К 1881 г. Пуанкаре успел получить куда более престижную работу в Университете Парижа, где за короткое время вырос в одного из ведущих математиков своего времени. Пуанкаре обладал прекрасной интуицией, и лучшие идеи, как правило, приходили к нему в те моменты, когда он думал о чем-то другом, – вспомните хотя бы историю с омнибусом. Он написал несколько научно-популярных бестселлеров: «Наука и гипотеза» (1901 г.), «Ценность науки» (1905 г.), «Наука и метод» (1908 г.). Безусловно, Пуанкаре стоял выше большинства других математиков того времени во многих областях, включая теорию комплексных функций, дифференциальные уравнения, неевклидову геометрию, топологию – которую он, по существу, основал, – и в применении математики в таких разных областях, как электричество, упругость, оптика, термодинамика, теория относительности, квантовая теория, небесная механика и космология.
Топология, если вы помните, – это «геометрия резинового листа». Евклидова геометрия строится вокруг свойств, которые сохраняются при жестких перемещениях, таких как длины, углы и площади. Топология отбрасывает все это и ищет свойства, которые, напротив, сохраняются при непрерывных преобразованиях, таких как сгибание, растягивание, сжатие и закручивание. К таким свойствам относятся связность (один кусок или два), наличие узлов и число отверстий (одно или больше). Предмет изучения здесь может показаться туманным, но свойства непрерывности фундаментальны – возможно, даже более фундаментальны, чем свойства симметрии. В XX в. топология наряду с алгеброй и анализом стала одним из трех китов теоретической математики.
В том, что так произошло, большая заслуга Пуанкаре, который перешел от резиновых листов к, если так можно выразиться, резиновым пространствам. Метафора листа – двумерная концепция. Если игнорировать все окружающее пространство – как видел его Гаусс, – то для определения точки на листе или, более формально, на поверхности, достаточно двух чисел. Классические топологи, и среди них ученик Гаусса Иоганн Листинг, сумели достаточно подробно разобраться в топологии поверхностей. В частности, они их проклассифицировали, то есть расписали все возможные формы поверхностей, воспользовавшись для этого хитроумным методом конструирования поверхности из плоского многоугольника (и его внутренней части).
Простой и очень важный пример поверхности – тор. В трехмерном пространстве тор имеет форму бублика с непременным отверстием посередине. Математический тор определяется как поверхность этого бублика – никакого теста внутри, одна только граница с окружающим воздухом. Концептуально эту фигуру можно определить без всякого теста и воздуха. Достаточно взять квадрат и добавить к нему правила, по которым соответствующие точки на противоположных сторонах квадрата тождественны.
Иоганн Листинг и другие топологи показали, что любая замкнутая поверхность конечных размеров может быть получена концептуальным склеиванием сторон подходящего многоугольника. Обычно такой многоугольник имеет больше четырех сторон, а правила склеивания могут быть довольно сложными. Исходя из этого, можно доказать, что любая ориентируемая – то есть имеющая две различные стороны, в отличие от знаменитой ленты Мёбиуса, – поверхность представляет собой