Доведя до совершенства теорию инвариантов – эта область исследований, по существу, заглохла после того, как с ней поработал Гильберт, и оживилась лишь много лет спустя в еще более общем контексте, причем тогда возродился интерес одновременно и к вычислениям, и к понятиям, – Гильберт нашел для себя новую область приложения сил. В 1893 г. он начал новый проект – «Отчет о числах» (
Основную роль алгебраические числа играют в теории чисел. Эйлер неявно использовал некоторые их свойства, к примеру при доказательстве Великой теоремы Ферма для кубов, но систематическое их изучение начал Гаусс. Пытаясь обобщить свой закон квадратичной взаимности на степени выше двойки, он открыл красивое расширение его на четвертые степени, основанное на алгебраических числах вида
В главе 6, в связи с Великой теоремой Ферма, мы говорили о том, как использовал алгебраические числа Куммер и какое он предложил понятие идеальных чисел. Дедекинд упростил эту идею, переформулировав ее в терминах особых
Все время работы над «Отчетом о числах» Гильберт вел обширную переписку на эту тему с Минковским – иногда даже слишком обширную, так что временами Гильберт чувствовал настоящее отчаяние; ему начинало казаться, что работа никогда не будет закончена в виде, который удовлетворил бы его взыскательного друга. Однако в конечном итоге отчет был опубликован. В нем были сформулированы и доказаны общие аналоги квадратичной взаимности, образовавшие основу того, что мы сегодня называем теорией полей классов – это до сих пор активно развивающаяся, хотя и весьма сложная технически понятийная основа для теории алгебраических чисел. В предисловии к «Отчетам» говорится:
Таким образом, мы видим, как далеко арифметика – королева математики – зашла в захвате обширных областей алгебры и теории функций, чтобы стать их лидером… Следует заключить, если я не ошибаюсь, что прежде всего современное развитие теоретической математики происходит под знаменем числа.
Возможно, сегодня мы не станем заходить так далеко, но в то время такое заявление было вполне оправданным.
Гильберт, как правило, работал 5–10 лет в одной области, решал в ней крупные задачи, доводил все до совершенства, а затем уходил на новые «угодья», иногда совершенно забывая, что когда-то изучал эту тему. Однажды он заметил, что занимается математикой потому, что в ней, если что-то забудешь, всегда можно вывести это заново. Математик до мозга костей, теперь он «покончил» с алгебраической теорией чисел. И двинулся дальше. Его студенты, которых он из года в год бомбардировал лекциями об алгебраических числах, были поражены, когда выяснилось, что в следующем году темой лекций Гильберта будут начала геометрии. Гильберт возвращался к Евклиду.