Читаем Значимые фигуры. Жизнь и открытия великих математиков полностью

На риторические вопросы иногда даются риторические ответы, и этот конкретный вопрос, воспринятый всерьез, завел математиков в глухие интеллектуальные дебри. Первоначальной мотивацией служила одна из особенностей трактата «Начала» Евклида, в котором обнаружился недочет. Не ошибка, а всего лишь нечто, казавшееся недостаточно элегантным и в каком-то смысле лишним. Евклид организовал свое изложение геометрии последовательно, в логическом порядке, а начал с простых допущений, которые были сформулированы явно и не доказывались. Все остальное затем выводилось логически из этих допущений, шаг за шагом. По большей части допущения эти были просты и разумны: «все прямые углы равны между собой»[20], к примеру. Но одно из них было настолько сложным, что выделялось в общем ряду, как белая ворона в стае.

И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные неограниченно эти прямые встретятся с той стороны, где углы меньше двух прямых[21].

Это утверждение известно как аксиома (или постулат) о параллельных, потому что на самом деле речь здесь идет о параллельных прямых. Если две прямые линии параллельны, они никогда не пересекаются. В данном случае аксиома о параллельных гласит, что сумма внутренних углов в этом случае должна быть равна в точности удвоенному прямому углу – 180°. И наоборот, углы будут именно такими, если прямые параллельны.

Понятие о параллельных прямых фундаментально и очевидно: достаточно взглянуть на линованную бумагу. Представляется самоочевидным, что такие прямые существуют и они, разумеется, никогда не встретятся, потому что расстояние между ними всюду одинаково и, соответственно, не может стать нулевым. Евклид наверняка создал проблему на пустом месте, ведь все так очевидно! Возникло общее ощущение, что должна существовать возможность доказать аксиому о параллельных, используя остальные Евклидовы допущения. Мало того, некоторые (таких людей было несколько) были убеждены, что сделали это, но ни одно из подобных доказательств не выдержало проверки: независимые математики всегда обнаруживали в них ошибку или незамеченное спорное допущение.

Одну из первых попыток разрешить этот вопрос предпринял в XI в. Омар Хайям. Я упоминал его работу, связанную с кубическими уравнениями, но это был ни в коем случае не единственный его взнос в математическую копилку. Его «Комментарии к трудностям во введениях книги Евклида» построены на более ранней попытке Хасана ибн аль-Хайсама (в латинизированном варианте Альхазен) доказать аксиому о параллельных. Хайям логически отверг доказательство Ибн аль-Хайсама, как и другие «доказательства», и заменил их рассуждениями, в которых свел аксиому о параллельных к более интуитивно понятному утверждению.

Один из ключевых чертежей Хайяма точно отражает суть проблемы. Его можно рассматривать как попытку построения прямоугольника – совершенно честную, можно сказать, попытку. Проводим прямую линию и строим под прямым углом к ней два отрезка прямых равной длины. Наконец, соединяем вторые концы этих отрезков, чтобы получить четвертую сторону прямоугольника. Готово!

Или нет? Откуда мы можем знать, что получившаяся в результате фигура – прямоугольник? В прямоугольнике все углы прямые, а противоположные стороны равны. На рисунке Хайяма мы видим, что два угла заведомо прямые и одна пара сторон одинакова. А что с остальными?

Да, согласен, все выглядит так, будто мы нарисовали прямоугольник, но это потому, что мы невольно пользуемся геометрией Евклида как мысленным ориентиром. И действительно, в Евклидовой геометрии мы можем доказать, что CD = AB и углы C и D тоже прямые. Однако этот вывод требует применения… той самой аксиомы о параллельных. Это едва ли можно считать удивительным, поскольку мы ожидаем, что CD будет параллельно AB. Если вы хотите доказать аксиому о параллельных на основании прочих аксиом Евклида, вам придется доказать, что Хайям нарисовал прямоугольник, не прибегая к аксиоме о параллельных. Более того, как понял Хайям, если вам удастся это доказать, дело будет сделано. Сама аксиома о параллельных напрямую из этого следует. Пытаясь избежать ловушки, связанной с попыткой доказать аксиому о параллельных, Хайям заменил ее на более простое предположение: «Две сходящиеся прямые пересекаются; невозможно, чтобы две сходящиеся прямые расходились в том же направлении, в каком они сходятся». И он вполне отчетливо понимал, что это действительно допущение.

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
10 гениев спорта
10 гениев спорта

Люди, о жизни которых рассказывается в этой книге, не просто добились больших успехов в спорте, они меняли этот мир, оказывали влияние на мировоззрение целых поколений, сравнимое с влиянием самых известных писателей или политиков. Может быть, кто-то из читателей помоложе, прочитав эту книгу, всерьез займется спортом и со временем станет новым Пеле, новой Ириной Родниной, Сергеем Бубкой или Михаэлем Шумахером. А может быть, подумает и решит, что большой спорт – это не для него. И вряд ли за это можно осуждать. Потому что спорт высшего уровня – это тяжелейший труд, изнурительные, доводящие до изнеможения тренировки, травмы, опасность для здоровья, а иногда даже и для жизни. Честь и слава тем, кто сумел пройти этот путь до конца, выстоял в борьбе с соперниками и собственными неудачами, сумел подчинить себе непокорную и зачастую жестокую судьбу! Герои этой книги добились своей цели и поэтому могут с полным правом называться гениями спорта…

Андрей Юрьевич Хорошевский

Биографии и Мемуары / Документальное
Клуб банкиров
Клуб банкиров

Дэвид Рокфеллер — один из крупнейших политических и финансовых деятелей XX века, известный американский банкир, глава дома Рокфеллеров. Внук нефтяного магната и первого в истории миллиардера Джона Д. Рокфеллера, основателя Стандарт Ойл.Рокфеллер известен как один из первых и наиболее влиятельных идеологов глобализации и неоконсерватизма, основатель знаменитого Бильдербергского клуба. На одном из заседаний Бильдербергского клуба он сказал: «В наше время мир готов шагать в сторону мирового правительства. Наднациональный суверенитет интеллектуальной элиты и мировых банкиров, несомненно, предпочтительнее национального самоопределения, практиковавшегося в былые столетия».В своей книге Д. Рокфеллер рассказывает, как создавался этот «суверенитет интеллектуальной элиты и мировых банкиров», как распространялось влияние финансовой олигархии в мире: в Европе, в Азии, в Африке и Латинской Америке. Особое внимание уделяется проникновению мировых банков в Россию, которое началось еще в брежневскую эпоху; приводятся тексты секретных переговоров Д. Рокфеллера с Брежневым, Косыгиным и другими советскими лидерами.

Дэвид Рокфеллер

Биографии и Мемуары / История / Образование и наука / Документальное