Читаем Значимые фигуры полностью

Сколько у Солнца быков, чужестранец, коль точно ты скажешь,Нам раздельно назвав тучных быков число,Также раздельно коров, сколько каждого цвета их было,Не назовет хоть никто в числах невеждой тебя,Все ж к мудрецам причислен не будешь. Учти же, пожалуй,Свойства какие еще Солнца быков числа.число белых быков + число черных быков = квадратное число,число пестрых быков + число рыжих быков = треугольное число.Если ты найдешь, чужестранец, умом пораскинув,И сможешь точно назвать каждого стада число,То уходи, возгордившись победой, и будет считаться,Что в этой мудрости ты все до конца превзошел[6].

Квадратные числа – это 1, 4, 9, 16 и т. д., получаются они при умножении натурального числа на само себя. Треугольные числа – это 1, 3, 6, 10 и т. д., образуемые сложением последовательных натуральных чисел, к примеру, 10 = 1 + 2 + 3 + 4. Эти условия образуют то, что мы сегодня называем системой диофантовых уравнений в честь Диофанта Александрийского, который написал о них около 250 г. в книге «Арифметика». Решение должно даваться в целых числах, поскольку вряд ли у бога Солнца в стаде ходит половинка коровы.

Первый набор условий дает бесконечное число возможных решений, в наименьшем из которых божественное стадо насчитывает 7 460 514 черных быков и сравнимое число остальных животных. Дополнительные условия позволяют выбрать среди этих решений и ведут к тому типу диофантовых уравнений, которые известны как уравнения Пелля (глава 6). Здесь нужно найти целые x и y, такие что nx2 + 1 = y2, где n – заданное целое число. К примеру, при n = 2 уравнение принимает вид 2x2 + 1 = y2, а его решениями являются пары чисел x = 2, y = 3 и x = 12, y = 17. В 1965 г. Хью Уильямс, Р. Герман и Чарльз Зарнке при помощи двух компьютеров фирмы IBM нашли наименьшее решение, удовлетворяющее двум дополнительным условиям. Это решение приблизительно равно 7, 76 × 10206544.

Архимед никак не мог найти это число вручную, к тому же нет никаких свидетельств того, что он вообще имеет какое-то отношение к этой задаче, кроме того что его имя фигурирует в названии стихотворения. Задача о быках до сих пор привлекает внимание специалистов по теории чисел и способствует получению новых результатов, к примеру решая уравнения Пелля.

* * *

Исторических данных о жизни Архимеда почти нет, однако о его смерти мы знаем чуть больше – если, конечно, считать, что хотя бы одна из дошедших до нас легенд соответствует истине. Но можно с уверенностью предположить, что хотя бы зерно правды в них присутствует.

Во время Второй Пунической войны, около 212 г. до н. э., римский генерал Марк Клавдий Марцелл осадил Сиракузы и взял город после двух лет осады. Плутарх рассказывает, что во время взятия города пожилой Архимед рассматривал какой-то чертеж на песке. Генерал послал солдата, чтобы тот пригласил Архимеда на встречу с ним, но математик отказался пойти, сказав, что не закончил работу над задачей. Солдат вышел из себя и убил Архимеда мечом; рассказывают, что последними словами мудреца были: «Не тронь моих чертежей!» Зная математиков, я полагаю, что такая ситуация вполне возможна, но Плутарх приводит и другой вариант истории, в которой Архимед пытается сдаться случайному солдату, а тот, решив, что математические инструменты в руках ученого стоят дорого, убивает его, чтобы ими завладеть. В обоих вариантах легенды Марцелл был очень недоволен смертью столь уважаемого гения механики.

Гробница Архимеда была украшена изображением его любимой теоремы из книги «О шаре и цилиндре»: объем шара, вписанного в цилиндр, равен 2/3 от его объема, а площадь поверхности шара равна площади боковой поверхности этого цилиндра. Через 100 с лишним лет после смерти Архимеда квестором (должностным лицом) на Сицилии был известный римский оратор Цицерон. Услышав о гробнице, он с трудом отыскал ее в заброшенном состоянии возле Агригентинских ворот в Сиракузах. Цицерон приказал восстановить гробницу, что позволило ему прочесть некоторые надписи и разглядеть чертеж шара и цилиндра.

Сегодня расположение этой гробницы неизвестно; судя по всему, от нее ничего не осталось. Но Архимед продолжает жить в своей математике, значительная часть которой не потеряла значения за более чем 2000 прошедших лет.

<p>2. Мастер пути</p><p>Лю Хуэй</p>Лю ХуэйЖил и работал: царство Цао Вэй, Китай, III в.
Перейти на страницу:

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии