В 1998 году западные информационные агентства сообщили, что в лаборатории Sandia National Laboratories, принадлежащей американскому Департаменту энергетики, разработана новая «светоизгибаюшая» (light bending) технология, которая в недалеком будущем найдет применение в телекоммуникационных сетях. Микроскопическая трехмерная структура (получившая название фотонной решетки) создана на основе кремния и позволяет передавать когерентный свет в оптическом диапазоне длин волн с минимальными потерями. Эффективность передачи составляет 95 процентов, что значительно превосходит показатель стандартных свето1 предающих сред (около 30 процентов), используемых в настоящее время. При этом можно направлять лучи по сложной траектории, содержащей «изгибы», практически под прямым углом в заданную точку. Решетка представляет собой пачку тонких кремниевых двухмерных дифракционных решеток, каждый слой которой повернут на 90 градусов относительно соседнего. Для создания работающей «фотонной решетки» достаточно десяти таких слоев.
При взгляде через микроскоп фотонная решетка похожа на подготовленный костер, сложенный «колодцем». Она обладает уникальной способностью изгибать траекторию световых волн определенной частоты практически в любом направлении и практически без потерь. Это изобретение может привести к существенному прогрессу в области телекоммуникаций и оптических компьютеров.
Решетка из перекрестных диэлектрических полосок является «идеально» отражающей средой для световых волн определенного диапазона частот, который называется «запрещенной зоной». Световые волны этого диапазона не могут распространяться внутри решетки, а при наличии внутри нее полостей или нерегулярностей оказываются «захваченными» такими «ловушками». Создавая цепочки нерегулярностей, можно формировать световедущие каналы, при помощи которых открывается возможность изменять направление световых волн даже на острые углы. Потери на изгиб в таких устройствах практически отсутствуют, а радиус изгиба в пять-десять меньше, чем в использующихся сейчас устройствах интегральной оптики.
Идея фотонной решетки была предложена еще в 1987 году Эли Яблоновичем, работающим сейчас профессором в Калифорнийском университете. Первый фотонный кристалл размером с бейсбольный мяч был создан в 1990 году, он управлял микроволновым излучением. Тогда же был создан кристалл размером уже с шарик для пинг-понга (в университете штата Айова), он тоже работал в микроволновом диапазоне. Первые кристаллы-решетки собирались вручную из обычных металлических иголок. В том же направлении работала и группа Иоаннопулоса в Массачусетсском технологическом институте.
Главное достижение лаборатории Sandia – технологический прорыв в область нанометровых трехмерных структур. Об открытии было объявлено 16 июля 1998 года, оно запатентовано, есть уже предложения от крупных промышленников, готовых организовать коммерческое производство. Современные решетки, созданные там Шоном Лин и Джимом Флеммингом, успешно работают в инфракрасном диапазоне (длины волн около десяти микрон). Мало того, исследователи не останавливаются на достигнутом и изготавливают решетку для полуторамикронных длин волн – именно в этом диапазоне сегодня передается информация по волоконно-оптическим кабелям. «У меня нет сомнений в том, что группа Лина добьется успеха еще в этом году», – говорит профессор Вильнев из Массачусетсского технологического института.
Такая уверенность основана на том, что в лаборатории Sandia очень развита технология изготовления микроструктур из кремния, похожая на ту, что обычно используют при производстве компьютерных чипов. Многослойная кремниевая «вафля» покрывается двуокисью кремния, затем в нем процарапываются канавки, которые заполняются полисиликоном. Слой полируется, и на него накладывается следующий с полосками в перпендикулярном первым направлении. После построения десятка или более слоев двуокись кремния вытравляется при помощи кислоты, и остается объемная решетка из полисиликоновых полосок толщиной 1,2 микрона и высотой 1,5 микрона с расстоянием между ними в 4,8 микрон. На шестидюймовом чипе можно разместить десяток тысяч таких решеток.
Подобное достижение означает революционный прорыв в создании оптического компьютера, мечты о котором давно будоражат умы изобретателей. Одним из главных препятствий на пути его создания была невозможность изгибать траектории лучей света на большие углы на малых расстояниях. Ведь если заменить провода в современных чипах световодами, то в устройстве размером со спичечный коробок световоды придется изгибать миллионы раз.
Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев
Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное