Читаем Знание - сила, 2003 № 09 (915) полностью

Поиск этот оказался сложным и продолжается по сию пору — со все возрастающим успехом. Один такой выдающийся успех был достигнут буквально на днях, когда группе исследователей под руководством С. Берджесса удалось разгадать принципы работы очередного такого «клеточного мотора» — молекулы динеина. Было бы жалко не приобщить читателя к той изумительной по тонкости и сложности картине «внутримолекулярной жизни», которую вскрыла в молекуле динеина группа Берджесса, но увы — даже просто рассказать об этой работе, а тем более — растолковать ее суть и значение, оказалось никак невозможно, предварительно не рассказав, хотя бы бегло, о молекулярных моторах вообще. Вот так это открытие и послужило первоначальным толчком к целому рассказу. Как говорится, был бы повод, а рассказ найдется. А рассказ, думается, полезен, ибо молекулярные эти моторы и в самом деле представляют огромный интерес. Ведь именно им жизнь обязана всей той особой, специфически присущей ей динамикой, без которой она, жизнь, была бы попросту невозможна.

Первым шагом к ответу на этот вопрос стало открытие того факта, что все клетки в организмах более сложных, чем бактерии, обладают двумя важнейшими свойствами, которые, собственно, и позволяют им существовать: исчезновение хотя бы одного из этих свойств приводит к гибели клетки. Это открытие было сделано в самые последние десятилетия и буквально перевернуло все прежние представления.

Одним из этих жизненно важных свойств является сложная организованность внутриклеточного пространства. Живая клетка — не просто «мешочек с протоплазмой», как говорил еще в XIX веке страстный пропагандист дарвинизма Томас Хаксли. Исследования последних десятилетий показали, что внутренность клетки ячеиста — она состоит из отдельных ячеек, «помещений», отделенных от других собственной мембраной. Каждая такая ячейка, или органелла (маленький орган) клетки имеет свою внутреннюю структуру и свой набор химических вешеств, каждая выполняет свою функцию. И каждая покрыта системой белков-рецепторов, задача которых — распознать, что из всего, что куда-то движется в клетке, предназначено именно для данной ячейки.

Движутся же в клетке те химические вещества, что необходимы для ее жизнедеятельности, и молекулы этих веществ не просто хаотически плавают в протоплазме, а направленно и организованно перемещаются в различных направлениячх, упакованные в крохотные контейнеры — те самые прозрачные пузырьки, которые впервые увидел Аллен. При этом каждый такой контейнер снабжен своим «опознавательным знаком», своим рецептором, белковой молекулой такой формы, которая распознается рецептором той — и только той — ячейки, для которой этот контейнер предназначен. Когда оба рецептора сочленяются, пузырек приваривается к органелле, и его содержимое переходит в нее, чтобы она могла выполнять свои функции.

Начатки такой организованности обнаружены уже у одноклеточных водорослей и бактерий, и раз эта внутренняя организация клеток давала бесспорные преимущества ее обладателям, а мутации непрерывно порождали все новые и новые (лучшие и худшие) варианты такой организованности, природе (естественному отбору) оставалось только отбирать то, что оказывалось организованным все лучше и все сложнее.

Видимо, именно таким путем когда-то возникли и начатки второго типа организации внутриклеточного пространства, второй особенности живых клеток — наличие в них внутреннею «скелета» и «системы транспортных путей», вместе с теми пузырьками, которые по этим путям движутся, и теми молекулярными моторами, которые движут пузырьки по этим путям.

«Скелет» клетки образован длинными молекулами белка актина, и каждая такая полимерная молекула состоит из множества отдельных звеньев-мономеров. Клетка обладает способностью по надобности убирать и наращивать эти кирпичики-мономеры, тем самым меняя форму и размеры молекул актина, а с ними — и всего своего скелета. Это-то и позволяет ей распластываться и ползти, и выпускать отростки, и округляться, и делиться. (Кроме того, волокна актина вместе с волокнами другого белка, миозина, осуществляют сокращение и расслабление мышечных клеток тела, но об этом чуть дальше.)

Взаимодействие молекул миозина и актина е наших мышцах.

Вверху: мышца в расслабленном состоянии.

Внизу: молекулы начинают скользить друг по другу, и мышца сокращается.

Подробности взаимодействия молекул двух веществ показаны на рисунке на с. 54

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже