Архитектура эта такова. Внутри каждой мышечной клетки имеются длинные волокна белка миозина. Каждая молекула миозина выглядит как палочка, конец которой расходится двумя шариками. Эти молекулы собраны по 400 молекул в группе так, что прямые их концы лежат параллельно, а головки-шарики расходятся во все стороны, точно букет цветов. Параллельно этому букету со всех сторон расположены длинные волокна белка-актина, и каждая миозиновая головка присоединяется к одному такому волокну. Все вместе это образует один сегмент мышечного волокна. Волокно в целом представляет собой множество таких сегментов, идуших вдоль него друг за другом. И таких волокон в клетке много. И клеток в мышце много. И концы всех волокон во всех клетках крепятся к одному и тому же тяжу. Поэтому при сокращении актиновых волокон один тяж тянут сразу миллионы молекул. Такое устройство обеспечивает мышцам их силу. Но за эту силу приходится расплачиваться. Каждое сокращение мышечной клетки забирает энергию у ее энергетических машин — молекул АТФ (аденозинтрифосфата), а также оставляет после себя определенные химические «отходы» (молекулы молочной кислоты). В результате мышцы постепенно устают. Систематическая тренировка, вроде ходьбы или плавания, создает в мышечных клетках больше АТФ и больше кровеносных сосудов, поставляющих кислород и питательные вещества и удаляющих «отходы», и потому улучшает работу мышц, повышая их выносливость.
Как, однако, происходит само сокращение каждого мышечного сегмента? Все начинается с прихода нервного сигнала. Затем головка миозина соединяется с актином, отросток молекулы, на котором сидит эти головка, в свою очередь изгибается и заставляет головку слегка подтянуть актиновое волокно на себя. В этот момент головка высвобождается, отросток распрямляется, головка прыгает чуть дальше и ухватывает волокно актина в следующем месте, заставляя его еще немного сократиться. То же самое происходит одновременно со всеми волокнами актина, окружающими данную группу миоэиновых молекул. Все они сокращаются и в то же время сближаются друг с другом.
В результате мышечное волокно в целом становится короче и толще, а все его актиновые молекулы разом тянут коллагеновый тяж, к которому прикреплены их вторые концы (первые прикреплены к костям скелета), и приводят его в механическое движение, которое затем передается соответствующему органу или конечности. (Это упрощенная картина — в действительности, клетки скелетных мышц так сильны, потому что соединены в так называемые суперклетки, а, к примеру, сокращения сердечной мышцы контролируются маленькой, с монету величиной, ipynnoft нервных клеток — «пэйсмэйкером», расположенным у вершины сердца; но работа всех этих мышц без исключения в конечном счете сводится к крохотным миозиновым молекулярным моторам.)
Процесс сокращения мышц начинается с прихода нервного сигнала, передающегося ионами кальция, а потому без кальция происходить не может вообще, и этим фактом объясняются многие знакомые нам явления. Скажем, ял кураре, которым пользуются первобытные охотники Амазонки, парализует жертву как раз благодаря тому, что молекулы этого яда, попав в кровь, проникают к рецепторам ацетилхолина и усаживаются на них, так что когда к этим рецепторам приходит сам ацетилхолин, свободных мест для него уже нет, и процесс передачи сигнала на мышечное сокращение прерывается. Аналогично работает белок ботулин, вызывающий одно из опаснейших пищевых отравлений, ботулизм.
А вот вирус полиомиелита попросту разрушает те нервные волокна, по которым с помощью кальция подаются сигналы на мышечное сокращение, и мышцы, оставшись без употребления, постепенно высыхают. С другой стороны, этот же «кальциевый привод» можно использовать в благодетельных целях. Так, сердечные больные нуждаются в понижении ритма биений сердца, в противном случае оно при нагрузках будет требовать больше кислорода, чем способны дать сузившиеся из-за атеросклероза сосуды. Этим людям помогают «бета-блокаторы» —препараты, которые несколько блокируют кальциевые каналы, тем самым понижая уровень кальция и, соответственно, уменьшая размах сокращений сердечной мышцы.
Рассказ о миозиновом моторе можно было бы продолжать еще и еще, но, как мы уже говорили, список молекулярных моторов клетки не исчерпывается миозином. Более того — миозин, скорее, весьма специфический мотор, работающий исключительно в мышечных клетках.