Квантовая механика — очень трудная наука, выводы которой часто противоречат здравому смыслу и нашему повседневному опыту. Неискушенному человеку трудно поверить в "придуманные физиками" соотношения неопределенностей. Кому придет в голову сомневаться в том, что у катящейся по столу горошины есть одновременно координата и скорость? Казалось бы, то же должно быть и для любой микрочастицы. Что из того, что она маленькая? Нужно просто научиться точным измерениям.
А вот опыты с микрочастицами говорят, что это не так. Пытаясь при измерении координаты "приколоть" частицу к точке, мы всякий раз передаем ей импульс. На тяжелую горошину это почти не оказывает влияния, а, например, легкий электрон, как живчик, прыгает при этом от одной точки к другой. Получается, что говорить одновременно о координате и скорости просто бессмысленно. Это — несовместимые понятия. Если измерена координата, мы можем говорить о частице, если же точно известна скорость — мы имеем дело фактически с распределенной в пространстве волной, которую не опишешь одной- единственной координатой.
Этого нельзя понять, ведь "понять" означает уменье выразить нечто новое через более привычные понятия, а квантовые понятия нельзя выразить через понятия, известные нам из школы ньютоновской физики. Квантовые понятия надо просто принять — привыкнуть к ним.
Студентом я никак не мог осмыслить фразу из учебника квантовой механики Д.И. Блохинцева: "Фотон нельзя представлять себе поплавком на гребне квантовой волны", и однажды сказал об этом Блохинцеву. Он с присущим ему юмором посоветовал: "А вы прочитайте эту фразу раз пятьдесят и всякий раз старайтесь понять, что бы это значило. Когда будет читать пятьдесят первый раз, вам все это покажется изначально очевидным!"
Принципиальную несводимость квантовых представлений к ньютоновским постоянно подчеркивали создатели квантовой науки, хотя с этим не соглашался Эйнштейн. Он полагал, что мы имеем дело всего лишь с временными "строительными лесами" на здании будущей физики, и пытался найти примеры, которые доказали бы неполноту квантовой теории, в силу которой она и приводит к парадоксам.
Один из таких примеров, который Эйнштейн придумал вместе с двумя своими коллегами, сводится к следующему. Частица света фотон, проходя через кристалл кальцита, превращается в два фотона с одинаковой (половинной) энергией и взаимно перпендикулярными поляризациями: у одного фотона колебания электрического поля происходят вертикально, у другого — горизонтально. При этом мы не знаем, у какого фотона какая поляризация. Известно лишь, что они перпендикулярны друг другу. Чтобы узнать их, один фотон (будем называть его "фотон А") направим в точку 1, где стоит анализатор поляризаций, а второй фотон (Б) пусть летит в точку 2, где есть свой анализатор. Точки 1 и 2 удалены друг от друга, и между приходящими туда фотонами нет никакой материальной связи.