Читаем Золото, пуля, спасительный яд. 250 лет нанотехнологий полностью

В 1937 году Руску пригласили в “Siemens”, где его назначили главным по электронным микроскопам. Руска поразительно быстро превратил созданный за пять лет до этого прототип в коммерческую модель. Уже в 1939 году компания “Siemens” выпустила на рынок электронные микроскопы с разрешающей способностью в десять нанометров. Существенно, что “в комплекте” предлагались методики применения электронной микроскопии в медицине и биологии, их разработкой в компании занимался брат Эрнста Руски – Гельмут, врач по образованию. “Siemens” долгое время была мировым лидером в этой области, соответственно, Руска стал крупнейшим в мире специалистом по электронной микроскопии.В 1955 году Руска возглавил вновь созданный Институт электронной микроскопии в Западном Берлине и одновременно стал преподавать в Техническом университете. Руске посчастливилось дожить до присуждения ему в 1986 году Нобелевской премии по физике. С момента его изобретения миновало пятьдесят пять лет.Первый прибор, собранный Кноллем и Руской, давал увеличение всего в четыреста раз, то есть был ничем не лучше оптических микроскопов. Но это не имело никакого значения, дело было в принципе. Они заменили световой луч пучком электронов. Кроме того, предложили принципиальную схему устройства, которая не претерпела изменений по сей день.

Эта схема чрезвычайно напоминает схему оптического микроскопа, а устройство просвечивающего электронного микроскопа в определенном смысле даже проще, чем у оптического. Во-первых, оптические линзы заменены катушками индуктивности, магнитное поле которых поддается легкой регулировке, по аналогии эта часть устройства получила название магнитных линз. Во-вторых, чрезвычайно упростилась задача получения “света” с определенной длиной волны. Эта величина для электрона зависит от его энергии: разгоняя электроны в электрическом поле, можно плавно регулировать их энергию и соответствующую ей длину волны, вплоть до значений порядка тысячных долей нанометра. Регистрация изображения также не представляла труда, это мог быть и экран, покрытый люминесцирующим составом, и фотопластинка.

Улучшение характеристик просвечивающих электронных микроскопов было делом техники. Сейчас созданы приборы сверхвысокого разрешения, обеспечивающие увеличение в миллион раз. С их помощью, например, мои аспиранты получают фотографии синтезированных ими наночастиц различных солей, на которых видны ровные ряды шариков – составляющих их атомов. Они показывают эти фотографии бестрепетно, как нечто само собой разумеющееся.

В 30–40-е годы о таком разрешении никто даже не мечтал, а если и мечтал, то молча, чтобы не подвергнуться насмешкам со стороны коллег. У просвечивающей электронной микроскопии при ее несомненных достоинствах есть и вполне очевидные, естественные ограничения. Для получения и манипулирования пучками электронов необходим высокий вакуум, таким образом, исследовать можно только твердые и сухие образцы. Кроме того, из самого названия метода следует, что образец должен быть хотя бы частично прозрачен для пучка электронов, для большинства веществ это соответствует толщине образца порядка десятков и сотен нанометров.

Поэтому в просвечивающей электронной микроскопии часто используют косвенный метод исследования. Для этого получают так называемую реплику – тонкий слепок с поверхности изучаемого объекта. Это напоминает процесс получения гипсовых масок или слепков, используемый в других областях человеческой деятельности. Для изготовления, например, углеродных реплик в вакуумированной камере испаряют углерод с угольных стержней, нагретых пропусканием электрического тока, пары углерода конденсируют на поверхность изучаемого объекта, а затем аккуратно отделяют полученную пленку. Толщина такой пленки составляет около десяти нанометров, ее получение само по себе служит воплощением нанотехнологий. Методика эта стала для исследователей настолько привычной, что они зачастую забывают об этом упомянуть, когда демонстрируют полученные фотографии, полагая, что слушателям это и так понятно. Понятно бывает не всем, и это приводит к разного рода недоразумениям.

Необходимо также учитывать, что электроны, используемые в методе просвечивающей электронной микроскопии, разгоняют до очень высоких скоростей. Зависимость тут простая: чем меньшую длину волны мы хотим получить, тем сильнее нам надо разогнать электрон. Понятно, что эти высокоэнергетические электроны оказывают сильное воздействие на вещество. Кристаллы неорганических веществ они прошивают без катастрофических последствий, но вот на органическую молекулу могут подействовать подобно разрывной пуле. Что уж говорить об единичных атомах или небольших молекулах – те просто отлетят в сторону.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже