Читаем Золотое правило полностью

Архимед не приписывал «волшебных свойств» кругу. Он знал, что явления природы объясняются естественными причинами. Такое объяснение действия рычага и хотел найти Архимед.

Простейший рычаг — это металлический или деревянный стержень. Если его подпереть в середине, то стержень останется в равновесии. Когда к концам рычага подвешены одинаковые грузы, то равновесие не нарушится. Но если на один конец рычага подвешен большой груз, а на другой — маленький, то рычаг выйдет из равновесия: одно его плечо опустится, а другое поднимется. Чтобы равновесие восстановилось, нужно опору передвинуть к большому грузу.

Архимед понял, что у рычага есть точка, в которой как будто собрана вся тяжесть грузов. Если рычаг подперт в этой точке, он сохраняет равновесие.

Эту точку Архимед назвал центром тяжести. Он исследовал условия равновесия других тел и доказал, что у каждого из них есть центр тяжести.

Тело, подпертое в центре тяжести, сохраняет равновесие при любом положении. У хорошо сделанного колеса центр тяжести — в отверстии ступицы. Поэтому колесо, насаженное на ось, находится в безразличном равновесии: как его ни поворачивай, оно сохраняет то положение, в каком его остановили. Этим пользуются, когда проверяют, хорошо ли уравновешено велосипедное колесо. Оно должно вращаться очень легко, но, когда его останавливают, колесо не должно поворачиваться само по себе.

Закон рычага

Архимед установил закон равновесия рычага: «плечи обратно пропорциональны силам (грузам)». Иначе говоря, длинное плечо должно быть во столько раз больше короткого, во сколько раз малый груз легче тяжелого. Например, пусть одно плечо рычага имеет в длину 20 сантиметров, а другое — впятеро больше—100 сантиметров. Тогда на короткое плечо можно подвесить 5 килограммов, а на длинное — только 1 килограмм, и рычаг останется в равновесии.

Это правило можно выразить другими словами: «произведения длины плеч на приложенные к ним силы равны между собой». Действительно, при взятых нами размерах плеч рычага и грузах:

5 X 20 = 1 X 100.

Однако рука, держащая длинное плечо рычага, описывает больший путь, чем конец короткого плеча. Пути, пройденные концами рычага, тоже обратно пропорциональны силам. Если конец длинного плеча пройдет расстояние в полметра, то короткое плечо — только 10 сантиметров. Пятикратный выигрыш в силе сопровождается пятикратным проигрышем в расстоянии.

Воображаемый опыт

Установив закон рычага, Архимед утверждал, что любую тяжесть можно приподнять малой силой, если только возможно взять соответствующей длины рычаг. Говорят, будто бы он воскликнул:

— Дайте мне точку опоры, и я приподниму Землю!

Современные ученые сомневаются в справедливости этой легенды. Архимед был хорошим математиком, и он должен был представлять, какой примерно понадобится рычаг для того, чтобы шевельнуть Землю.

Для опыта попробуем мысленно приподнять рычагом не весь земной шар и даже не гору высотой 5 или 6 километров, а только гранитный холм, имеющий коническую форму и высоту 540 метров.

Объем гранитного конуса такого размера равен округленно 165 миллионам кубических метров, а вес —445 миллионам тонн.

Сила, с какой человек может нажать на рычаг, не превышает его веса, то есть примерно 75 килограммов.

Значит, на одно плечо рычага будет действовать сила в 75 килограммов, а на другое — в 445 миллионов тонн, то есть в 5,9 миллиарда раз больше.

Плечи рычага обратно пропорциональны силам. Поэтому, если одно плечо возьмем равным километру, те другое должно быть в 5,9 миллиарда раз длиннее. Иначе говоря, длинное плечо Архимедова рычага, приподнимающего гору, выдвинулось бы за пределы солнечной системы. Силачу, орудующему этим рычагом, пришлось бы перебраться на планету Плутон, чтобы оттуда «нажимать» на рычаг.

Слово «нажимать» взято в кавычки по необходимости: ведь выигрыш в силе неминуемо связан с потерей в расстоянии. Пути, проходимые концами рычага, обратно пропорциональны силам.

Чтобы приподнять гранитный холм всего лишь на метр, другому концу рычага придется описать в пространстве гигантскую дугу в 5,9 миллиона километров!

Воображаемому силачу нужно было бы не нажимать на рычаг, а терпеливо тянуть или толкать его. Если при этом он вышагивал бы в сутки по 80 километров, то всю работу закончил бы только в том случае, если дожил бы до 200-летнего возраста!

Не только сдвинуть земной шар, но даже приподнять небольшую горку не мог бы человек, пользуясь рычагом. Правда, Архимед не знал, какова масса земного шара. Но расчет веса горы он уже мог сделать. Конечно, он понимал, что в действительности невозможно переместить такую большую массу.

Легенда о галере

— Клянусь Зевсом, ты рассказываешь удивительные вещи, Архимед! — воскликнул Гиерон, слушавший пояснения ученого о свойствах рычага. — Но где же найти точку опоры, чтобы приподнять Землю? Поясни это.

— Такой точки не существует, — ответил Архимед.

— Значит, убедиться в могуществе механики невозможно? — продолжал Гиерон.

Перейти на страницу:

Все книги серии Школьная библиотека (Детгиз)

Дом с волшебными окнами. Повести
Дом с волшебными окнами. Повести

В авторский сборник Эсфири Михайловны Эмден  включены повести:«Приключения маленького актера» — рис. Б. Калаушина«Дом с волшебными окнами» — рис. Н. Радлова«Школьный год Марина Петровой» — рис. Н. Калиты1. Главный герой «Приключений маленького актера» (1958) — добрый и жизнерадостный игрушечный Петрушка — единственный друг девочки Саши. Но сидеть на одном месте не в его характере, он должен действовать, ему нужен театр, представления, публика: ведь Петрушка — прирождённый актёр…2. «Дом с волшебными окнами» (1959) — увлекательная новогодняя сказка. В этой повести-сказке может случиться многое. В один тихий новогодний вечер вдруг откроется в комнату дверь, и вместе с облаком морозного пара войдёт Бабушка-кукла и позовёт тебя в Дом с волшебными окнами…3. В повести «Школьный год Марины Петровой» (1956) мы встречаемся с весёлой, иногда беспечной и упрямой, но талантливой Мариной, ученицей музыкальной школы. В этой повести уже нет сказки. Но зато как увлекателен этот мир музыки, мир настоящего искусства!

Борис Матвеевич Калаушин , Николай Иванович Калита , Николай Эрнестович Радлов , Эсфирь Михайловна Эмден

Проза для детей / Детская проза / Сказки / Книги Для Детей

Похожие книги

Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука
Квантовая механика и интегралы по траекториям
Квантовая механика и интегралы по траекториям

Оригинальный курс квантовой механики, написанный на основе лекций известного американского физика, лауреата Нобелевской премии Р. П. Фейнмана. От всех существующих изложений данная книга отличается как исходными посылками, так и математическим аппаратом: в качестве отправного пункта принимается не уравнение Шрёдингера для волновой функции, а представление о бесконечномерном интегрировании по траекториям. Это позволяет наглядным и естественным образом связать квантовое и классическое описания движения. Формализм новой теории подробно развит и проиллюстрирован на примере ряда традиционных квантовых задач (гармонический осциллятор, движение частицы в электромагнитном поле и др.). Книга представляет интерес для широкого круга физиков — научных работников, инженеров, лекторов, преподавателей, аспирантов. Она может служить дополнительным пособием по курсу квантовой механики для студентов физических специальностей.

Ричард Филлипс Фейнман , Ю. Л. Обухов

Физика / Образование и наука