Читаем Звезды: их рождение, жизнь и смерть полностью

В том же 1953 г. автор этой книги объяснил «аморфное» оптическое излучение Крабовидной туманности тем же синхротронным механизмом, который ответствен за ее радиоизлучение. Предыдущие попытки объяснения этого давно известного излучения наталкивались на большие, в сущности говоря, непреодолимые, трудности. Согласно «классической» трактовке непрерывного оптического спектра Крабовидной туманности, основанной на единственно известном тогда механизме теплового излучения горячего, ионизованного газа, следовало предположить, что в Крабовидной туманности имеется огромное количество этого газа, порядка 20—30 солнечных масс. При этом необходимо было считать, что температура такого газа исчисляется сотнями тысяч градусов, что совершенно необычно для газовых туманностей, температура которых в десятки раз ниже. Наконец, в газовых волокнах наблюдается значительно более низкая температура — порядка 10—20 тысяч кельвинов. Очень трудно себе представить, как могут такие сравнительно холодные волокна существовать, будучи окружены со всех сторон значительно более горячей плазмой той же плотности. Ведь давление «внешнего» горячего газа должно будет неограниченно их сжимать!

Представление о том, что у Крабовидной туманности оптическое излучение с непрерывным спектром, так же как и ее радиоизлучение, объясняется синхротронным механизмом, радикально снимает все эти трудности и противоречия. Ведь если в этой туманности существуют релятивистские электроны с энергиями, лежащими в интервале 108—109 эВ, то должны быть, конечно, в значительно меньшем количестве, релятивистские электроны с большими энергиями, например, в интервале 1011—1012 эВ. Так как частоты, на которых излучают синхротронным механизмом релятивистские электроны, пропорциональны квадрату их энергий (см. формулу (16.13)), то если электроны с энергией 108—109 эВ в магнитном поле H 10-3 Э излучают на частотах дециметрового и сантиметрового диапазона, электроны с энергией 1011 эВ будут излучать как раз на оптических частотах, которые в сотни тысяч раз выше. Идея, как видим, довольно простая.

Спектральная плотность потока в непрерывном оптическом спектре Крабовидной туманности почти в 400 раз меньше, чем в области радиочастот. С другой стороны, спектральная плотность потока радиоизлучения хотя и медленно, но убывает с ростом частоты. Логично было сделать вывод, что и дальше, в сторону миллиметровых и инфракрасных волн, может быть продолжено синхротронное излучение Крабовидной туманности. И, наконец, почему бы ему не тянуться еще дальше, до оптических и даже более высоких частот? Другими словами, следует ожидать единого синхротронного спектра у этой туманности, который должен тянуться от радио- до оптических и более высоких частот.

Расчеты показывают, что в Крабовидной туманности имеется единый энергетический спектр релятивистских электронов, включающий в себя как гораздо более многочисленные электроны с энергией 108 — 109 эВ, являющиеся причиной ее радиоизлучения, так и в десятки тысяч раз меньшее количество значительно более энергичных электронов с энергией порядка 1011—1012 эВ, излучающих оптические и ультрафиолетовые кванты. Концентрация последних совершенно ничтожна: один электрон на сотни кубических метров пространства! Полная же масса всех релятивистских частиц в Крабовидной туманности, если считать, что на один релятивистский электрон приходится один релятивистский протон, около 1027 г, что близко к массе земного шара! Для того чтобы попытаться количественно объяснить оптическое излучение Крабовидной туманности тепловым механизмом, нужно было предположить, что там содержится 1035 г горячего газа, т. е. в сотню миллионов раз больше вещества, чем в случае релятивистских частиц. Мы видим, как эффективен механизм синхротронного излучения: ничтожное количество релятивистских частиц обеспечивает мощное излучение туманностей в течение довольно длительного времени.

Таким образом, новая концепция превратила «аморфную» массу Крабовидной туманности в «пузырь», содержащий совершенно ничтожное (по космическим масштабам, конечно) количество вещества в форме релятивистских частиц. Помимо большого количества трудностей старой, «тепловой» теории, синхротронная теория сняла еще одну трудность, известную со времен Лампланда. Она непосредственно объяснила наблюдавшиеся этим астрономом быстрые изменения в распределении яркости «Краба» (см. выше). Ведь отдельные облака релятивистских электронов могут двигаться в пределах туманности со скоростью, составляющей заметную часть скорости света!

Рис. 17.7: Фотографии Крабовидной туманности через различно ориентированные поляроиды.
Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука