Читаем Звезды: их рождение, жизнь и смерть полностью

Особого внимания заслуживает структура самой центральной части Крабовидной туманности. Эту область еще в 1942—1943 гг. тщательно исследовал Бааде, который обнаружил там удивительные изменения. Время от времени в самой центральной части туманности возникают маленькие, довольно яркие конденсации, обычно вытянутой формы, которые очень быстро движутся от места своего зарождения в направлении от центра туманности. Схема структуры самой центральной части «Краба» приведена на рис. 17.10. Два маленьких кружка означают центральные звездочки. Штриховые фигуры b и a символизируют яркие детали туманности. Деталь b почти не изменяется, чего нельзя сказать о детали a, которая меняет свое положение (по отношению к центральным звездочкам), форму и яркость. Она довольно внезапно появляется в пространстве между «нижней» из двух звездочек (которая, как это будет видно в следующей главе, оказалась пульсаром) и деталью b. Далее она движется по направлению к детали b и иногда сливается с нею. Весь описанный выше цикл длится 3—4 месяца. Если знать угловое перемещение детали a и время, в течение которого это перемещение произошло, не представляет труда получить скорость детали a, вернее, ее проекцию на плоскость, перпендикулярную к лучу зрения. Эта скорость превышает 40 000 км/с! Очень похоже, что через центральную намагниченную область Крабовидной туманности с огромной скоростью проходит волна сжатия магнитных силовых линий. Это следует из анализа поляризации детали a, приводящего к установлению направления магнитного поля вдоль направления вытянутости этой детали. Следовательно, направление движения детали a перпендикулярно к направлению магнитного поля. Все эти удивительные явления означают, что в центральной части Крабовидной туманности наблюдается продолжающаяся до нашего времени «активность». Это было исторически первое указание на то, что остаток вспышки Сверхновой 1054 г. не «мертв», что в нем происходят какие-то огромной мощности физические процессы, приводящие к наблюдаемой очень быстрой изменчивости в центральной части Крабовидной туманности.

Рис. 17.10: Структура центральной области Крабовидной туманности (схема).

1963 год открыл новую страницу в истории исследования Крабовидной туманности. Весной этого года группа исследователей Морской лаборатории США, возглавляемая выдающимся американским ученым, основоположником внеатмосферной астрономии Фридманом, обнаружила рентгеновское излучение от «Краба». Эксперимент был выполнен на маленькой ракете типа «Айроби». Детектором рентгеновского излучения была «батарея» пропорциональных счетчиков фотонов общей площадью всего лишь в 65 см2. Детектор регистрировал кванты в диапазоне 1,5—8 Å. Поток оказался довольно значительным: 1,5 10-8 эрг/см2 с. Это всего лишь на порядок меньше, чем поток от самого яркого рентгеновского источника в созвездии Скорпиона, который был незадолго до этого открыт. Сейчас, спустя 20 лет, техника рентгеновской астрономии позволяет регистрировать потоки в несколько десятков тысяч раз меньшие, чем от Крабовидной туманности. Всего на небе пока обнаружено около 1000 рентгеновских источников. Одним из самых ярких является источник, отождествляемый с Крабовидной туманностью.

Сразу же после открытия этого рентгеновского источника возникла проблема: а что представляет собой этот источник? Можно было ожидать, что излучает сама Крабовидная туманность, т. е. объект, имеющий хотя и небольшие, но вполне определенные угловые размеры порядка 5 минут дуги. Но, с другой стороны, нельзя было исключить и возможность того, что источником рентгеновского излучения является звезда, некогда взорвавшаяся как сверхновая. В таком случае угловые размеры рентгеновского источника были бы ничтожно малы, т. е. он оказался бы «точечным». Разрешающая способность рентгеновской астрономии, в данном случае — способность отличить «точечный» источник от малого, но протяженного объекта, 10 лет назад была весьма низка. Счастливое обстоятельство помогло, однако, астрономам быстро решить эту проблему. Мы уже говорили выше о том, что при исследовании распределения радиояркости Крабовидной туманности весьма эффективным оказался метод анализа радиоизлучения во время ее покрытия Луной. Аналогичный метод вполне приложим к анализу рентгеновского излучения Крабовидной туманностью. Нужно в подходящий момент во время покрытия Луной туманности запустить ракету, на которой должен находиться детектор, ориентированный на Краб. При этом должен непрерывно регистрироваться уровень рентгеновского излучения от туманности. Если источник рентгеновского излучения точечный, то в момент его покрытия краем Луны поток резко упадет до нуля. Если источник протяженный, то поток рентгеновского излучения по мере нахождения края Луны на источник будет постепенно уменьшаться.

Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука