Читаем Звуки и знаки полностью

Пример этот имеет иллюстративный характер — все числовые данные у нас были. Однако часто лингвисты имеют дело с отрывочными сведениями, неполными материалами по диалекту, эпохе или стилю того или иного языка. Здесь математическая модель помогает восстановить не засвидетельствованные в дошедших до нас памятниках этапы развития языка. Так, А. А. Пиотровская и Р. Г. Пиотровский выводят формулу, по которой можно вычислить динамику формирования и развития в старофранцузском языке определенного артикля (формирование это шло в народно-разговорной речи, которая почти не отражена в дошедших до нас памятниках той эпохи).

Зависимость между объемом текста, который подвергается обработке, и числом разных слов, которые в нем окажутся, очевидна. Нельзя ли отыскать математически строгую формулу, по которой можно было бы, исходя из объема текста, вычислять количество слов? И определять, какой объем даст нам статистически достоверные результаты?

Первым найти такую формулу словаря попытался уже упоминавшийся нами Дж. Ципф. Связь между частотой употребления слова и его рангом, то есть номером в списке, получила наименование «закон Ципфа». Частотные словари представляют собой обычно списки слов, которые расположены по их рангу: первым идет слово, которое встречается чаще всего, затем второе по встречаемости и т. д. Однако выяснилось, что «закон Ципфа» не универсален. Были попытки описать распределение слов в тексте с помощью специальных формул теории вероятностей — так называемого нормального распределения, распределения Пуассона, распределения Маркова— Колмогорова и т. д. (причем, как показала советская исследовательница М. Е. Каширина, распределение Маркова — Колмогорова является наиболее общим и универсальным для распределения любых языковых единиц).

В теории вероятностей известны десятки законов распределения случайной величины. Задача статистической лингвистики — выбрать тот закон, который лучше всего отражает именно реалии языка, а не какие-либо иные закономерности.

Вот характерный пример, заимствованный нами из учебника «Математическая лингвистика», написанного Р. Г. Пиотровским, К. Б. Бектаевым и А. А. Пиотровской. И наше обычное поведение, и функционирование техники, и порождение речи — в той или иной степени вероятностны. Садясь в самолет или автомобиль, мы уверены, что все будет хорошо. Составляя словарь для перевода русских текстов по математике, мы не станем включать в него слово дядя или словосочетание бубновый туз.

И все-таки несчастные случаи, увы, бывают, какова бы ни была их вероятность. В книгах по математике можно найти и бубнового туза и даже дядю (так, в труде «Теория вероятностей» Е. С. Вентцель читатель может обнаружить цитату из начала «Евгения Онегина», знаменитое «Мой дядя самых честных правил…»). Так что же, отменить автомобили и не летать на самолетах? А в математические словари наряду со словом дядя включать еще и тетю, и бабушку, и названия игральных карт и вообще все сотни тысяч русских слов? Разумеется, нет.

Если сравнить астрономически большое число полетов и автомобильных пробегов с числом несчастных случаев, станет ясно, насколько мала их вероятность. И вероятность всех этих дядей и бубновых тузов в математических трактатах мала — хотя авторы их могут и процитировать Пушкина, и воспользоваться известными всем игральными картами, иллюстрируя пример случайного выбора или комбинаторных сочетаний.

Студент сдает экзамен. Из ста предложений, данных ему для перевода, в шести он напутал с синтаксисом. Пятерки такой студент не заслужил, но зачет ему поставит любой здравомыслящий преподаватель, даже не знакомый с теорией вероятностей. Ибо понимает, что с помощью словаря такой студент сумеет перевести любой взятый наугад текст. Но если такое же число ошибок сделает машина-переводчик, ее программа зачета не получит. Студент умеет пользоваться словарем, при переводе опирается на смысл фразы, и небольшие помехи с синтаксисом ему не слишком повредят. А ЭВМ свои ошибки в синтаксисе не искупит ни лексикой, ни смыслом, ей недоступным. Прощать мы должны не шесть, а скажем, одну ошибку на сто фраз.

Что же касается техники, тут дело и вовсе серьезное. Вот почему так строго к нарушениям наше ГАИ и так тщательно проверяют готовность самолета работники Аэрофлота. Ибо тут, когда речь идет о людях, случайность должна быть сведена до минимума: не одну ошибку на сотню случаев, а даже одну ошибку на сто тысяч нельзя допускать!

<p>Инженерная лингвистика</p></span><span>

Связь техники, статистики и языкознания наметилась давно. Ведь даже на простой, но очень важный вопрос: как удобнее расположить клавиши на пишущей машинке? — нельзя ответить одному только технику или лингвисту. Нужно знать частоты употребления различных букв и сочетаний этих букв. Нужно знать конструкцию машинки (вот почему редкие буквы расположены на периферии, а частые — в центре клавиатуры, причем на основании статистики спарены т и ь, п и р и т. д.).

Перейти на страницу:

Все книги серии Библиотека «Знание»

Похожие книги

Письмо на английском языке: примеры, как писать (личное, деловое, резюме, готовые письма как образец)
Письмо на английском языке: примеры, как писать (личное, деловое, резюме, готовые письма как образец)

Как писать письмо на английском языке? Пособие представляет собой собрание образцов писем на английском языке, затрагивающих самые разнообразные стороны повседневной жизни. Это дружеские и деловые письма, письма – приглашения в гости и письма-благодарности, письма-извинения и письма-просьбы.Книга знакомит с этикетом написания письма на английском языке, некоторыми правилами английской пунктуации и орфографии, а также содержит справочные материалы, необходимые при написании писем.Пособие рассчитано на широкий круг лиц, владеющих английским языком в той или иной степени и стремящихся поддерживать письменные контакты с представителями англоязычных стран. Может использоваться как учебник английского языка, репетитор английского.Книга основана на ускоренных методах изучения иностранных языков.

Денис Александрович Шевчук

Языкознание, иностранные языки / Иностранные языки / Образование и наука