Каждый раз время включения и выключения лампы уменьшается вдвое. Вся процедура длится 2 минуты. Как узнать, будет спустя этот срок лампа включена или выключена?
Каждое нечетное нажатие кнопки будет лампу включать, каждое четное – выключать. Спустя две минуты после начала опыта он завершится тем, что лампа или будет включена (при последнем нечётном нажатии включателя), или выключена (последним было чётное нажатие на выключатель).
Парадокс с лампой Томсона напоминает парадоксы Зенона
Какое же число будет последним – чётное или нечётное?
«Проблема в том, что последнего натурального числа в природе не существует по определению. То есть лампа будет либо выключена, либо включена, однако узнать об этом нет никакой возможности! Парадокс!»
Такое объяснение, мне не вполне понятное, из Интернета. Как мне представляется, интервал между включением и выключением лампы будет стремительно сокращаться, приближаясь к двухминутному рубежу всё более медленно, но так и не достигнув его.
Однако наблюдатель, не дожидаясь конца этого бесконечного сходящегося ряда, ровно через 2 минуты прекратит эксперимент. Перед этим включение и выключение чередовались с огромной скоростью, за ничтожные отрезки времени (выражение парадоксальное, ибо время как субстанцию не материальную, резать невозможно).
Тут должен сказаться тот промежуток времени, который требуется для переключения. Он не может равняться нулю, ибо тогда переключения не будет. Выходит, спустя 2 минуты после включения лампы Томпсона, возможно три варианта: лампа включена, выключена или не включена и не выключена (момент переключения).
Вот ещё один вариант объяснения:
«По мнению одних, лампа Томсона – вполне разумный “мысленный эксперимент”, по мнению других, – вопиющая нелепость.
Парадокс с лампой Томсона беспокоит наш разум потому, что не существует логической причины, по которой лампу Томсона нельзя было бы бесконечно много раз включить и выключить.
Если бегун Зенона успевает за 2 мин. преодолеть бесконечно много отрезков дистанции, каждый из которых вдвое меньше предыдущего, то почему ровно за 2 мин. нельзя успеть бесконечно много раз включить и выключить некую реально не существующую идеальную лампу? Но если лампа Томсона может за 2 мин. бесконечно много раз перейти из состояния “вкл.” в состояние “выкл.”, то это означает, что существует “последнее” натуральное число, с чем трудно согласиться.
Философ Макс Блэк сформулировал тот же парадокс несколько иначе. Он рассмотрел “машину бесконечности”, переводящую шарик из лунки
Ряд 1 + 1/2 + 1/4 +… сходится, и все операции по перекатыванию шарика завершаются в течение 2 мин. Но в какой из лунок – в
На последний вопрос можно ответить: если шарика нет ни в одной из двух лунок, значит, он находится между ними.
Парадокс удвоения шара
Геометрическую теорему, которую называют парадоксом удвоения шара, доказали польские математики Стефан Банах и Альфред Тарский. Чтобы понять, как они это сделали, надо профессионально знать соответствующий раздел высшей математики. Будем довольствоваться общим описанием.
Утверждается: если шар разделить по меньшей мере на пять частей, из них можно составить два шара, в точности подобные исходному шару.
Только и всего!
Шар можно «разбить» на куски и собрать из них два таких же шара
Сразу хочется спросить, а можно ли реализовать на практике такую теорию? Это было бы самым замечательным достижением за всю историю человечества!
Увы, когда речь идёт о теоретической высшей математике, надо готовиться к фантастическим идеям, которые доказываются с научной безупречностью. Вот только не надо вспоминать о нашем бренном материальном мире. Математика – наука идеалистическая.
То, что для непосвящённого выглядит как парадокс (а то и нелепость), для знатока представляется оригинальной логичной теоремой, которая может иметь несколько столь же сугубо теоретических следствий.
Для популярного объяснения теоремы Банаха – Тарского в Интернете приведено такое рассуждение. Окружность состоит из бесконечного количества точек, ибо они не имеют никаких измерений в пространстве как нуль-мерный объект. Если взять каждую вторую точку окружности, то они могут составить ещё одну окружность точно такого радиуса, что и первая.
«По такому же принципу нужно действовать и с шаром, чтобы получить его точную копию из него самого. Очевидно, что “куски” в таком разбиении не могут быть измеримыми (и невозможно осуществить такое разбиение какими-либо средствами на практике)», – пишет автор этого комментария.