Однако эпигенетические изменения нестабильны. Они быстро накапливаются, но могут и легко исчезнуть. Они регулируются процессами, протекающими в организме, а также внешней средой. Тут можно назвать и процессы, связанные со старением организма, и особенности питания, и пережитый нами стресс, и лекарства, которые мы вынуждены постоянно принимать, и даже эмоции, испытываемые нами. Научно доказано, что эпигенетические изменения, вызванные, например, стрессом, могут при определенных условиях передаваться трем-четырем следующим поколениям (этот факт вызвал в кругах ученых бурные споры, виделся многим ошибкой, каким-то лженаучным утверждением). Для нашего организма, отмечают исследователи, чрезвычайно важно, что он может так гибко реагировать на вызовы, которые бросает нам окружающая среда.
На сегодняшний день установлено, что нарушение метилирования ДНК и другие эпигенетические сигналы приводят к преждевременному старению, способствуют развитию таких патологий, как диабет, астма, псориаз, вызывают хронические заболевания и тяжелые психические расстройства (болезнь Альцгеймера, болезнь Паркинсона, аутизм, шизофрения), оказывают влияние даже на то, как мы переносим инфекционные болезни. Известно, что многочисленные микроорганизмы, обитающие внутри нас, в том числе вирусы и грибы, способны менять метилирование ДНК и тем самым они заставляют наши гены выполнять то, что выгодно им.
В медицине сформировалось даже отдельное научное направление – эпигенетика рака. Ведь характерные эпигенетические нарушения известны сегодня почти для всех видов злокачественных новообразований. Они возникают уже на самой ранней стадии рака и обуславливают, как будет протекать болезнь. Эти выявленные эпигенетические маркеры должны служить своего рода мишенями для новых противоопухолевых препаратов, которые будут лечить не «рак вообще», а онкологическое заболевание вполне конкретного человека.
В каком-то смысле эпигенетика и впрямь больше чем генетика. Она может решительно менять живой организм, не затрагивая принципиальной схемы, по которой тот создан. В ближайшие десятилетия ученым предстоит досконально понять, как эти изменения влияют на наше здоровье.
Тысячи… тысячи протеинов
Итак, в 2001 году удалось составить точную карту генома человека – получить бесконечный ряд «букв», в котором среди биологического мусора затеряны отдельные «слова», то бишь гены. После этого пришло время заняться «биогерменевтикой» – истолковать добытую запись, отыскивая среди непонятицы знаков все новые гены.
Но в поисках случайных «слов» не утратим ли мы общий смысл сказанного? Гены – всего лишь «инструкция», «схема», по которой создана подлинная загадка природы: протеины, то есть белки. Говоря языком, понятным всем, гены – поваренная книга, испещренная тысячами рецептов; протеины – угощение, выставленное на стол.
Без протеинов не было бы жизни. Из них состоят бесчисленные клетки и ткани, слагающие наше тело. Они в обличье ферментов, медиаторов и других биологически активных элементов вдыхают в него жизнь. Они определяют всю нашу жизнь – наше здоровье и судьбу.
В процессах, протекающих внутри организма, участвует невероятное множество белковых молекул. Для ученых всё более понятно, что разнообразие жизненных процессов нельзя сводить исключительно к генам. Его надо искать на других уровнях – уровнях клеток и протеинов.
Именно поэтому для биологов и медиков знание всех протеинов, содержащихся в организме, представление о том, как они работают, еще важнее, чем знание генома. Однако изучить всю совокупность протеинов, понять, для чего они нужны, что за обязанности выполняют, как влияют на здоровье, гораздо труднее, чем расшифровать геном. Структура протеинов очень разнообразна. В каждой ткани, в каждой клетке нашего тела имеется бесчисленное множество протеинов.
В начале XX века они уже пребывали в центре внимания ученых. Именно тогда стало ясно, что белковые молекулы являются основными участниками жизненных процессов. Поэтому их назвали «протеинами» (от греческого слова
Однако в середине XX века, когда была открыта структура ДНК, всё внимание ученых переключилось на генетический код живых организмов. Протеины казались теперь чем-то второстепенным. Примерный механизм их возникновения стал понятен. Гены представляют собой, в частности, инструкцию по сборке протеинов. Еще в конце XX века считалось, что у каждого гена имеется схема всего одного протеина с одной-единственной функцией. Однако это оказалось не так, выяснилось, что всё гораздо сложнее.