Лагранж, которого к тому моменту уже смело можно было назвать одним из самых выдающихся математиков мира, продолжал увлеченно и напряженно работать. И вскоре ставшее привычным переутомление дало о себе знать. Ученый заплатил за свои достижения тяжелыми приступами депрессии. В 1761 году его врачи объявили, что отказываются нести ответственность за здоровье Лагранжа, если он не устроит себе продолжительный отдых и не будет соблюдать режим. Жозеф Луи упрямиться не стал, и со временем его здоровье поправилось, правда, приступы депрессии все же появлялись на протяжении всей его жизни.
В 1762 году Парижская академия наук объявила конкурс на лучший труд, посвященный движению Луны. В следующем году Лагранж послал на рассмотрение Академии свою статью о либрации Луны. Статья прибыла в Париж незадолго перед приездом автора. Дело в том, что в ноябре 1763 года Лагранж отправился в длительное путешествие: он должен был сопровождать маркиза Карачиолли, посла из Неаполя, который ранее работал в Турине, а теперь получил назначение в Лондон. Однако до Лондона Жозеф Луи так и не доехал – в Париже он тяжело заболел, и от дальнейшей поездки пришлось отказаться. Но нет худа без добра: во Франции Лагранж познакомился с Д’аламбером. Маститый ученый писал о своем молодом коллеге: «В течение шести недель здесь пребывал месье Лагранж из Турина. Он весьма серьезно заболел и нуждается: нет, не в финансовой поддержке, маркиз Карачиолли, направленный в Англию, позаботился о том, чтобы он ни в чем не испытывал недостатка, он нуждается в знаках внимания со стороны своей родины… В его лице Турин обладает сокровищем, ценности которого, возможно, не осознает».
В Париже Лагранж получил премию, присужденную за работу о либрации. В Турин он вернулся только в начале 1765 года. Через два года ученый получил еще одну премию за исследования движения спутников Юпитера.
В 1766 году Леонард Эйлер покинул Пруссию. По совету Д’аламбера и самого Эйлера Фридрих II пригласил Лагранжа в Берлин, где ему был предложен пост президента Академии наук и директора ее физико-математического отделения. Как «скромно» выразился в своем письме сам монарх, «величайший король Европы хотел бы иметь при своем дворе величайшего математика Европы». В Берлине большинство ученых встретило Лагранжа весьма радушно. Он подружился с Ламбертом[39]
и Иоганном Бернулли. Но находились и те, кто не был рад видеть слишком, по их мнению, молодого ученого на высоком посту главы Академии. Одним из таких недоброжелателей стал Кастильон, который был старше туринца более чем на тридцать лет и считал, что тот занял его место. Но отношения между учеными скоро улучшились, причем в связи с событиями от науки весьма далекими: через год после прибытия в Берлин Лагранж женился на кузине Кастильона Виттории Конти. Правда, брак этот был бездетным и, в общем-то, несчастливым. Через несколько лет после свадьбы Виттория заболела. Долгие годы Лагранж, здоровье которого тоже оставляло желать лучшего, ухаживал за своей супругой, скончавшейся в 1783 году.На службе у Фридриха Великого Лагранж состоял в течение 20 лет. Этот период жизни ученого был невероятно плодотворным. Он написал около 150 работ для Туринской, Берлинской и Парижской академий. Среди них были важные труды по алгебре и теории чисел, решению дифференциальных уравнений в частных производных, теории вероятности, механике. Отдельно следует упомянуть три статьи по астрономии на темы конкурсов, объявленных Парижской академией. Все три получили премии. Кроме того, в Берлине Лагранж создал фундаментальный труд «Аналитическая механика», ставший одним из главных в его жизни. Удивительно, что этот трактат он задумал будучи 19-летним юношей. В «Аналитической механике» Лагранж не только подытожил достижения в этой области со времен Ньютона, но и фактически создал классическую аналитическую механику в виде учения об общих дифференциальных уравнениях движения произвольных материальных систем. В основу всей статики автор положил «общую формулу», представляющую собой принцип возможных перемещений[40]
. Динамика основывалась на «общей формуле», включающей принцип возможных перемещений и принцип Д’аламбера.