Открытие Гамовым туннелирования вдохновило физиков Роберта Аткинсона и Фридриха (Фрица) Хоутерманса[84]. В работе, опубликованной в 1929 году, они писали: «Не так давно Гамов продемонстрировал, что положительно заряженные частицы способны проникать в атомное ядро, даже несмотря на то что традиционные представления считают их энергию недостаточной для этого». Далее они математически рассчитывают, как тяжелое ядро может таким способом вобрать в себя поочередно четыре протона[85], а затем испустить целую альфа-частицу. Их ошибка, если так можно выразиться, крылась в представлении, что состав Солнца аналогичен составу Земли: что вокруг множество тяжелых ядер, в которых мог происходить аналогичный процесс. Они, как и все ученые того времени, не знали, что ключ к разгадке в непосредственном взаимодействии протонов друг с другом. Но этот пробел в их концепции гораздо менее важен, чем то, что им удалось представить расчеты. С их помощью можно было выяснить, какого количества взаимодействий ядер в секунду было бы достаточно для поддержания сияния Солнца. Число оказалось на удивление небольшим, что, соответственно, делает очень значительным потенциальный возраст такой звезды, как Солнце.
Развивая далее их идею, можно просчитать, что даже в условиях, существующих внутри Солнца (по современным оценкам, температура там составляет около 15 млн К), электрический барьер преодолеют только самые быстрые протоны. При любой температуре частицы в среде, подобной солнечной материи, движутся с разными скоростями, но с ростом температуры их средняя скорость растет. Скорости отдельных частиц могут быть больше или меньше средней в соответствии с хорошо известными законами статистики. Поэтому можно подсчитать, какая их часть движется, например, на 10 %, 20 % или в два раза быстрее среднего и так далее.
Это следствие из расчетов Аткинсона и Хоутерманса показывает, насколько мало ядерных слияний необходимо для того, чтобы Солнце светило. Чтобы внутри Солнца соединились два протона, им нужно столкнуться почти точно «лоб в лоб», при этом один из них должен двигаться впятеро быстрее, чем в среднем. Лишь один протон из 100 миллионов обладает нужной скоростью, и лишь одно столкновение из 10 септиллионов (10 триллионов триллионов, или 1025) приводит к слиянию{15}. В среднем каждый протон летает внутри Солнца, сталкиваясь раз за разом с другими, подобно шарику в безумном космическом пинбольном автомате, 14 млрд лет, прежде чем соединится с другим протоном и примет участие в последующей реакции образования гелия. Слияние ядер – чрезвычайно редкий процесс даже внутри Солнца. Однако там столько протонов, что каждую секунду 616 млн тонн ядер водорода (протонов) превращаются в 611 тонн ядер гелия (альфа-частиц), причем остальные пять миллионов тонн массы превращаются в энергию в соответствии с уравнением Эйнштейна. И в Солнце все еще остается столько водорода, что за 5 млрд лет в гелий преобразуется всего 4 % исходного вещества. Проблема временн
В 1930-х годах Аткинсон (уже один, поскольку Хоутерманс занялся другой темой) доказал, что слияние двух протонов с образованием ядра дейтерия (дейтрона), состоящего из прочно связанных одного протона и одного нейтрона, действительно наиболее вероятная первая стадия в образовании гелия и источник энергии Солнца. Он выдвинул идею, что в процессе задействованы и более тяжелые ядра, но к 1936 году было очевидно, что Солнце содержит огромное количество водорода и что ключевой момент слияния ядер внутри Солнца – взаимодействие протонов. Несложно понять, отчего это так. Более тяжелые ядра содержат больше протонов, поэтому их положительный заряд больше и электрические силы отталкивания усложняют процесс туннелирования в них для пролетающих мимо протонов. Как оказалось, тяжелые ядра действительно задействованы в процессе слияния, предсказанном Аткинсоном и Хоутермансом, в некоторых других звездах, где условия еще более экстремальны. Но даже в 1936 году все еще было непонятно, сколько же водорода на Солнце.