Читаем 13.8 полностью

Эти сомнения порождены неудачным совпадением, которое в начале 1930-х годов повело астрофизиков по тупиковому пути. Начатые Артуром Эддингтоном расчеты, описывающие базовую структуру звезды, подобной Солнцу, в физических терминах шара из раскаленной материи и определяющие температуру в ее центре, зависят от состава звезды. В каждой из них уравновешены сжимающая ее сила притяжения и стремящееся разорвать ее давление, в том числе давление электромагнитного излучения (света и других волн). Давление волн очень важно, поскольку электромагнитное излучение активно взаимодействует внутри звезды с заряженными частицами – отрицательными электронами и положительными ядрами. Если заряженных частиц слишком много, они задерживают излучение внутри звезды и она начинает расширяться. Если их мало, излучение свободно покидает звезду и она сдувается, словно воздушный шарик. Сжимаясь, она разогревается изнутри, производя больше электромагнитного излучения, которое останавливает процесс сжатия; расширяясь, она внутри остывает, излучения становится меньше и расширение прекращается. Но Эддингтона и его современников больше всего интересовало именно состояние равновесия, баланса.

На него влияет еще один фактор – не только число заряженных частиц, но и их расположение. Например, ядро атома самой распространенной формы железа содержит 26 протонов и 30 нейтронов. Если все протоны звезды были бы упакованы в ядра железа, баланс с электромагнитным излучением оказался бы совсем не таким, как если бы все протоны были свободны, хотя в любом случае на каждый протон приходится один электрон (свободно летающий и способный взаимодействовать с электромагнитным излучением).

Важнейший фактор, который стало возможным принимать во внимание только после открытия нейтронов, – это количество электронов на нуклон (это общее название протонов и нейтронов). Если бы звезда полностью состояла из водорода, все нуклоны были бы протонами, и на каждый протон приходился бы один электрон, и коэффициент электронов на нуклон равнялся бы единице. Если бы звезда состояла только из гелия, этот коэффициент снизился бы до 0,5, поскольку в ядре гелия четыре нуклона, но лишь два из них – положительно заряженные протоны, и для поддержания баланса им нужны два электрона. Если бы звезда состояла из железа, коэффициент оказался бы равен 20: 56 ≈ 0,36. Когда астрофизики поняли, что внутри Солнца очень много водорода, они пересмотрели расчеты Эддингтона с учетом данного факта.

Но тут обнаружилась любопытная вещь. Расчеты показали, что в шаре размером с Солнце, имеющем все наблюдаемые извне характеристики (например, температуру поверхности) нашего светила, возможны лишь два стабильных состояния. Либо 35 % его внешнего слоя составляет водород, либо минимум 95 % всего вещества состоит из водорода и гелия с очень низким содержанием всех прочих элементов. Астрофизики, ранее уверенные, что состав Солнца более или менее близок к составу Земли, были вынуждены принять тот факт, что как минимум треть нашего светила – это водород. Но дальше они не пошли: принять, что водород и гелий могут составлять 95 % Солнца (и, следовательно, других звезд), было для них уж слишком. Такое заблуждение, а это было именно оно, определяло ход научной мысли вплоть до 1950-х годов. Однако это не помешало ученым выяснить с точностью, как именно звезды выделяют энергию, превращая водород в гелий, и перейти к первым верным оценкам их возраста.

<p>Циклы слияний</p>

Здесь на сцену вновь вышел Георгий Гамов. В 1938 году он организовал конференцию в Вашингтоне, собрав астрономов и физиков для обсуждения проблемы образования энергии внутри звезд. Одним из участников встречи был тридцатиоднолетний Ганс Бете[86] – один из множества немецких физиков, эмигрировавших в Америку после прихода к власти Гитлера. На конференции обсуждался такой основной вопрос: какие именно процессы слияния ядер могут производить количество тепла, необходимое для поддержания стабильного потока энергии от Солнца при предполагаемой наукой температуре внутри светила. К 1938 году ученые уже могли опираться на достаточно большой свод данных, описывающих скорости различных типов реакций. Так, если бы внутри Солнца было, скажем, много лития, то путем взаимодействия с ядрами водорода он быстро превращался бы в гелий, производя столько энергии, что Солнце бы взорвалось. Напротив, если Солнце преимущественно состояло бы из кислорода и водорода, реакция между ядрами кислорода и протонами происходила бы настолько медленно, что звезда сжималась бы до уровня достаточного разогрева ее внутренней части для активизации взаимодействия ядер. Задачей исследователей было найти комбинацию элементов, которая оказалась бы самой подходящей.

Перейти на страницу:

Похожие книги

Эволюция человека. Книга III. Кости, гены и культура
Эволюция человека. Книга III. Кости, гены и культура

В третьем томе знаменитой "Эволюции человека" рассказывается о новых открытиях, сделанных археологами, палеоантропологами, этологами и генетиками за последние десять лет, а также о новых теориях, благодаря которым наше понимание собственного происхождения становится полнее и глубже. В свете новых данных на некоторые прежние выводы можно взглянуть под другим углом, а порой и предложить новые интерпретации. Так, для объяснения удивительно быстрого увеличения объема мозга в эволюции рода Homo была предложена новая многообещающая идея – теория "культурного драйва", или сопряженной эволюции мозга, социального обучения и культуры.

Александр Владимирович Марков , Елена Борисовна Наймарк

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Рассказы о металлах
Рассказы о металлах

Научно-популярная книга об истории открытия, свойствах и применении важнейших металлов и сплавов.Много веков металлы верно служат человеку, помогая ему строить и созидать, покорять стихию, овладевать тайнами природы, создавать замечательные машины и механизмы.Богат и интересен мир металлов. Среди них встречаются старые друзья человека: медь, железо, свинец, золото, серебро, олово, ртуть. Эта дружба насчитывает уже тысячи лет. Но есть и такие металлы, знакомство с которыми состоялось лишь в последние десятилетия. О судьбах важнейших металлов, об их "планах на будущее" рассказывает эта книга.Первое издание книги "Рассказы о металлах" (1970 г.) отмечено дипломом конкурса Московской организации Союза журналистов СССР на лучшую работу года по научной журналистике и дипломом ежегодного конкурса Всесоюзного общества "Знание" на лучшие произведения научно-популярной литературы. Четвертое издание книги переработано и дополнено новыми материалами.Предназначена для самого широкого круга читателей: учащихся, студентов, преподавателей, специалистов — всех интересующихся историей и развитием металлургии, химии, материаловедения.Венецкий С.И. Рассказы о металлах. — 4-е изд., перераб. и доп. — М.: Металлургия, 1985. — 240 с, ил.Иллюстрации Алексея Владимировича Колли.

Сергей Иосифович Венецкий

Детская образовательная литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Металлургия / Научпоп / Книги Для Детей