У этого процесса, однако, есть любопытный побочный эффект. Как я сказал, углерод при нем не расходуется, но это верно только при сбалансированности цикла. Некоторые реакции в нем происходят быстрее других, и медленные взаимодействия служат своеобразным шлюзом: ядра определенного типа формируются перед ними в большом количестве и «ждут», пока просочившиеся сквозь этот шлюз ядра пройдут очередное преобразование и сбалансируют ситуацию. Из-за такого несовпадения скоростей реакции равновесие достигается тогда, когда относительные пропорции вовлеченных в цикл элементов составляют 5,5 % углерода-12, 0,9 % углерода-13, 93,6 % азота-14 и 0,004 % кислорода-15. Иными словами, даже если изначально в звезде вообще не содержится азота, он быстро сформируется и сможет стать главным участником CNO-цикла (по массе), поскольку скорость конвертации азота-14 в азот-15 намного медленнее, чем его образование из кислорода-15. Таким образом, CNO-цикл представляет собой важнейший источник азота во Вселенной, включая, как мы еще увидим, азот в воздухе, которым мы дышим. Когда-то этот газ образовался в рамках CNO-цикла внутри давно умерших звезд.
В удивительном прорыве Бете была лишь одна проблема. Хотя вычисления показали, что эти взаимодействия могут осуществляться при температуре, существующей внутри Солнца, они все равно были бы довольно редкими (поскольку для них нужны экстремально быстро движущиеся частицы), поэтому не смогли бы породить много энергии. CNO-цикл действует достаточно эффективно как основной источник энергии внутри очень массивных и жарких звезд – но не таких, как Солнце. Этот недостаток CNO-цикла в приложении к Солнцу еще не был очевиден в 1938 году и в течение более чем десяти последующих лет, но в том же году Ганс Бете и его коллега Чарльз Критчфилд[90] разработали теорию альтернативного источника энергии, который впоследствии оказался для Солнца основным. Они отталкивались от открытия Аткинсона, что слияние двух протонов – наиболее вероятный процесс ядерного слияния внутри Солнца. Этот процесс получил название протон-протонного цикла.
Цикл начинается с лобового столкновения двух быстро движущихся протонов и их соединения путем туннелирования, преодолевающего электрическое отталкивание. В итоге один из протонов превращается в нейтрон и образовавшееся ядро дейтерия испускает позитрон и нейтрино. Далее в ядро дейтерия туннелируется еще один протон, формируя ядро гелия-3 (два протона и один нейтрон). Наконец, два ядра гелия-3 сталкиваются и сливаются, почти сразу же отделяя два протона и образуя ядро гелия-4 (два протона и два нейтрона[91]). Как и в CNO-цикле, в итоге четыре протона превращаются в одно ядро гелия-4, высвобождая энергию. Однако важнее всего то, что протон-протонный цикл может успешно осуществляться при температуре внутри Солнца и порождать нужное количество энергии. Оба процесса превращения водорода в гелий известны астрономам как примеры «горения» водорода. Это не горение в традиционном понимании, не химическое соединение веществ с кислородом (в этом смысле водород горит в кислородной среде, образуя воду). Ядерное «горение» высвобождает намного больше энергии, чем химическое. CNO-цикл представляет собой основного поставщика энергии для звезд с внутренней температурой свыше 20 млн К и массой в полтора и более раз большей, чем у Солнца. Протон-протонный цикл относительно эффективен уже при температуре 15 млн К, но именно относительно. Как уже упоминалось, внутри Солнца лишь один из ста миллионов протонов движется с достаточной скоростью для запуска этого цикла, и даже у этих частиц не каждое столкновение приводит к слиянию. По мере того как ученые все больше сходились во мнении, что Солнце действительно в основном состоит из водорода, астрономы вынуждены были рассматривать значительно расширенную временн
Каменный век
С точки зрения современного понимания состава Солнца, скорость высвобождения энергии с помощью протон-протонного цикла подсказывает нам, как долго такая звезда, изначально состоящая преимущественно из водорода, способна светить более или менее стабильно, прежде чем б