163. Поначалу кажется, что это число 1111. И действительно, какое же еще большее число можно изобразить с помощью четырех единиц, не употребляя при этом никаких знаков действий? Однако число, большее 1111 во много раз – это 1111.
164. Это утверждение верно. Трехногий стол всегда будет касаться поверхности, на которой он стоит, концами трех своих ножек, потому что (вспомните геометрию) через каждые три точки пространства проходит только одна плоскость (как и через две точки проходит только одна прямая). Именно поэтому стол с тремя ножками никогда не качается. Четвертая ножка не сделала бы его устойчивее и даже наоборот: пришлось бы всякий раз заботиться о том, чтобы стол с четырьмя ножками не качался, подкладывая под них различные выравнивающие предметы. По этой же причине для устойчивости землемерных и фотографических приборов используют треноги. Как видим, данная задача не физическая (как может показаться), а геометрическая.
165. Обычно кажется, что линия горизонта находится на уровне наших глаз. Однако это впечатление обманчиво. На самом деле линия горизонта расположена ниже уровня глаз, о чем свидетельствует простой схематический рисунок.
Кроме того, даже если бы земля была не шарообразной, а плоской, то линия горизонта все равно находилась бы ниже уровня глаз наблюдателя.
То, что она располагается на уровне глаз – иллюзия. Причем, когда мы поднимаемся над земной поверхностью (например, на воздушном шаре), то кажется, что линия горизонта остается на уровне глаз, т. е. как бы поднимается вместе с нами.
166. Наименьшее целое положительное число, которое можно написать двумя цифрами, не употребляя никаких знаков действий, – это не 10 (как можно предположить), а единица, представленная в виде 11, 12, 13 и т. д. до 19, а также 10, 20 и т. д. до 90 (т. к. любое число в нулевой степени равно единице).
167. Предположение, что угол будет казаться величиной в 8°, неверно. Величина угла никак не изменится при рассматривании его через увеличительное стекло. В этом случае увеличится длина дуги, стягивающей угол, и во столько же раз увеличится радиус этой дуги.
168. Кажется, что при понижении температуры всего на 1° укорочение проволоки и ее углубление в землю будет минимальным, фактически незаметным. Однако это не так. Когда проволока стала короче, уменьшилась длина окружности, стягивающей земной шар, следовательно, уменьшился и ее радиус. Очевидно, что величина уменьшения радиуса и есть величина углубления проволоки в землю. Если длина экваториальной проволоки – 40 000 000 м, то при ее охлаждении на 1°, она укоротилась на 400 м (см. условие задачи). Насколько при этом уменьшится радиус данной проволочной окружности? Вспомним, что радиус любой окружности всегда в 2 или в 6,28 раз меньше ее длины (L = 2R). Значит, если длина окружности уменьшилась на 400 м, то ее радиус стал меньше на 400: 6, 28 64 м. Таким образом, проволока углубится в землю примерно на 64 м, а не на несколько миллиметров, как может показаться.
169. На первый взгляд определить величину угла безо всяких измерений не представляется возможным. Тем не менее, данная задача вполне разрешима. Пусть дан угол AOB (см. рисунок). Построим окружность произвольного радиуса с центром в точке О. Точки C и D, в которых она пересекается со сторонами угла, соединим отрезком. Получится хорда CD. Далее надо от точки C откладывать хорду CD при помощи циркуля до тех пор, пока его ножка не совпадет с исходной точкой C. При этом надо посчитать, сколько раз была отложена хорда и сколько раз была обойдена окружность. Когда мы откладываем хорду, мы как бы увеличиваем неизвестную нам величину угла AOB в x раз (количество отложенных хорд).
Количество обходов окружности примем за y. Увеличив угол AOB в x раз, мы обошли окружность (360°) · y раз. Таким образом, получается, что AOB · x = 360° · y. Следовательно, AOB = (360 · y): x, т. е. чтобы найти величину угла надо количество обходов окружности умножить на 360° и разделить получившийся результат на количество отложенных хорд. Как видим, задача решается действительно безо всяких измерений. Также она не требует никаких познаний в геометрии, кроме того, что окружность состоит из 360°. Данная задача не столько геометрическая, сколько логическая. Кстати, при отсутствии циркуля можно начертить окружность с помощью булавки и нитки и отложить хорду, используя те же приспособления.
170. 888 + 88 + 8 + 8 + 8 = 1000
171. Один из отцов приходится другому сыном, т. е. речь идет не о четырех людях, а о трех – это дед, сын и внук. Дед дал сыну 500 рублей, а тот отдал внуку (т. е. своему сыну) 400 рублей. Таким образом, два сына вместе увеличили количество денег на 500 рублей.
172. Площадь основания широкой коробки в 2 x 2, т. е. в четыре раза больше, чем узкой, а высота ее в три раза меньше. Значит, объем широкой коробки в 4/3 раза больше, чем узкой. Таким образом, низкая, но широкая коробка более вместительна, чем высокая, но узкая. Если содержимое высокой коробки переместить в низкую, оно заполнит собой только 3/4 ее объема.